m^2=\frac{(ab+cd)(ac+bd)}{ad+bc}\tag{1}
n^2=\frac{(ac+bd)(ad+bc)}{ab+cd}\tag{2}.
Proof. By the Law of Cosines,
\begin{align*}m^2&=a^2+d^2-2ad\cos{A}\\&=a^2+d^2-2ad(2\cos^2{\frac{A}{2}}-1)\\&=(a+d)^2-4ad\cos^2{\frac{A}{2}}\end{align*}
Substituting from the half-angle formula (see formula (5) in this page) we get
\begin{align*}m^2&=(a+d)^2-\frac{ad[(a+d)^2-(b-c)^2]}{ad+bc}\\&=\frac{bc(a+d)^2+ad(b-c)^2}{ad+bc}\\&=\frac{a^2bc+bcd^2+ab^2d+ac^2d}{ad+bc}\\&=\frac{(ab+cd)(ac+bd)}{ad+bc}.\end{align*}
\square
Similarly we can get (2).
Related material
No hay comentarios:
Publicar un comentario