In Cut-the-knot's Relations between various elements of a triangle, the formulae (a generalization can be found here)
\sin^2{\frac{\gamma}{2}} = \frac{(s-a)(s-b)}{ab}\quad and\quad\cos^2{\frac{\gamma}{2}}= \frac{s(s-c)}{ab}
are derived using Heron's formula. Here we give an alternative proof without using Heron's Formula and we demonstrate several well-known theorems based on these formulae as a sample of its power. We will be using standard notation: BC=a, AC=b, AB=c, \Delta for the area, s for the semiperimeter, R for the circumradius and r for the inradius. Let D, E and F be the contact points of the incircle with AC, AB and BC, respectively. Also, let AE=AD=x; BE=BF=y; CD=CF=z.
Notice that \frac{\cot{\frac{\gamma}{2}}}{s-c} = \frac{1}{r}. Also, We know Δ = rs and Δ =\frac {ab\sin{\gamma}}{2}, hence
\frac{\cot{\frac{\gamma}{2}}}{s-c}=\frac{1}{r}=\frac{s}{\Delta}=\frac{2s}{ab\sin{\gamma}}
But, \sin{\gamma} = 2\sin{\frac{\gamma}{2}}\cos{\frac{\gamma}{2}}, so
\frac{\cos{\frac{\gamma}{2}}}{\sin{\frac{\gamma}{2}}}\cdot{\sin{\frac{\gamma}{2}}\cos{\frac{\gamma}{2}}} = \frac{s(s-c)}{ab}
from which we get \cos^2{\frac{\gamma}{2}} = \frac{s(s-c)}{ab}.
The other formula can be obtained replacing \cos^2{\frac{\gamma}{2}} by 1 - \sin^2{\frac{\gamma}{2}}. Indeed,
\begin{aligned} 1-\sin^2{\frac{\gamma}{2}} &= \frac{s(s-c)}{ab} \\ \sin^2{\frac{\gamma}{2}} &= 1-\frac{s(s-c)}{ab} \\ &= \frac{\left(ab-s(s-c)\right)}{ab} \\ &= \frac{\left((y+z)(x+z)-(x+y+z)(z)\right)}{ab}\\ &= \frac{xy}{ab} \\ &=\frac{(s-a)(s-b)}{ab} \end{aligned}
\square
Geometrical proofs can be found at Trigonography.com.
1. A proof of Heron's Formula
Making use of the formulae proven above and the double angle identity for sine we have
\sin{\gamma}=2\sqrt{\frac{s(s-c)}{ab}}\sqrt{\frac{(s-a)(s-b)}{ab}}=2\frac{\sqrt{s(s-a)(s-b)(s-c)}}{ab}
Since \Delta=\frac{ab\sin{\gamma}}{2}, it follows
\Delta=\sqrt{s(s-a)(s-b)(s-c)}
\square
2. A proof of the Law of Cosines
Since (s-a)=x, (s-b)=y and (s-c)=z, then the following identity holds:
ab\cos{\gamma}=ab\cos^2{\frac{\gamma}{2}}-ab\sin^2{\frac{\gamma}{2}}=s(s-c)-(s-a)(s-b)
Substituting and multiplying by 4,
4ab\cos{\gamma}=(a+b+c)(a+b-c)-(b+c-a)(a+c-b)
Expanding and Simplifying,
2ab\cos{\gamma}=a^2+b^2-c^2
\square
A similar reasoning must show that a^2=b^2+c^2-2bc\cos{\alpha} and b^2=a^2+c^2-2ac\cos{\beta}.
3. Proofs for some trigonometric identities associated to a triangle
a) \tan{\frac{\alpha}{2}}\tan{\frac{\beta}{2}}+\tan{\frac{\alpha}{2}}\tan{\frac{\gamma}{2}}+\tan{\frac{\beta}{2}}\tan{\frac{\gamma}{2}}=1.
As a consequence of the formulae proven at the beginning of the note,
\tan{\frac{\alpha}{2}}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}, \quad\tan{\frac{\beta}{2}}=\sqrt{\frac{(s-a)(s-c)}{s(s-b)}}\quad and \quad \tan{\frac{\gamma}{2}}=\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}
So, by canceling and simplifying you get
\begin{aligned}\tan{\frac{\alpha}{2}}\tan{\frac{\beta}{2}}+\tan{\frac{\alpha}{2}}\tan{\frac{\gamma}{2}}+\tan{\frac{\beta}{2}}\tan{\frac{\gamma}{2}} &=\frac{s-c}{s}+\frac{s-b}{s}+\frac{s-a}{s}\\ &=\frac{z+y+x}{s}\\ &=\frac{s}{s}=1\end{aligned}
\square
b) r=4R\sin{\frac{\alpha}{2}}\sin{\frac{\beta}{2}}\sin{\frac{\gamma}{2}}.
We make use of the well-known relationship abc=4R\Delta (see here for a proof) and Heron's Formula.
\square
c) s=4R\cos{\frac{\alpha}{2}}\cos{\frac{\beta}{2}}\cos{\frac{\gamma}{2}}.
\begin{aligned}s&=4R\cos{\frac{\alpha}{2}}\cos{\frac{\beta}{2}}\cos{\frac{\gamma}{2}}\\ &=4R\sqrt{\frac{s(s-a)}{bc}}\sqrt{\frac{s(s-b)}{ac}}\sqrt{\frac{s(s-c)}{ab}}\\&=4R\sqrt{\frac{s^2\Delta^2}{a^2b^2c^2}}\\&=4R\frac{s\Delta}{abc}\\&=4R\frac{s\Delta}{4R\Delta}\\&=s\end{aligned}
\square
Consequently, the following relationship also holds
\tan{\frac{\alpha}{2}}\tan{\frac{\beta}{2}}\tan{\frac{\gamma}{2}}=\frac{r}{s}
or
\cot{\frac{\alpha}{2}}\cot{\frac{\beta}{2}}\cot{\frac{\gamma}{2}}=\frac{s}{r}
To prove the above identity we will show that the right hand side equals \frac{s}{r}.
\square
We invite the reader to prove the following identity (possibly new) on their own.
\frac{\cot{\frac{\alpha}{2}}\cot{\frac{\beta}{2}}+\cot{\frac{\alpha}{2}}\cot{\frac{\gamma}{2}}+\cot{\frac{\beta}{2}}\cot{\frac{\gamma}{2}}}{(s-a)(s-b)+(s-a)(s-c)+(s-b)(s-c)}=\frac{1}{r^2}
4. The product AI\cdot{BI}\cdot{CI}
Consider a triangle \triangle{ABC} and its Incenter, I. Denote R and r the circumradius and inradius, respectively. Also let AI=k; BI=l; CI=m. Then, the following identity holds
klm=4Rr^2
Proof. We make use of the half-angle formula,
\cos^2{\frac{\gamma}{2}}= \frac{s(s-c)}{ab}
Notice that \cos{\frac{\gamma}{2}}=\frac{(s-c)}{m}. Also, because of half-angle formula we have \cos{\frac{\gamma}{2}}=\sqrt{\frac{s(s-a)}{ab}}. Equating both expressions and solving for m^2,
m^2=\frac{ab(s-c)}{s}
Similarly you get k^2=\frac{bc(s-a)}{s} and l^2=\frac{ac(s-b)}{s}. Hence,
(klm)^2=\frac{a^2b^2c^2(s-a)(s-b)(s-c)}{s^3}=\frac{a^2b^2c^2s(s-a)(s-b)(s-c)}{s^4}
Substituting from Heron's formula,
(klm)^2=\frac{a^2b^2c^2\Delta^2}{s^4}
Simplifying and using the well-known formulas abc=4R\Delta and \Delta=rs you get the desired result.
klm=\frac{abc\Delta}{s^2}=\frac{4R\Delta^2}{s^2}=4Rr^2
See also
- Length of angle bisector: yet another application of the half-angle formulas
- Using the half-angle formulas to derive Mahavira's identities
- Using the half-angle formula for cosine to derive Zelich's lemma on mixtilinear incircles
- Two Identities and their Consequences, pp. 5-11
- Generalization of Mollweide's formulas (rather Newton's)
- Generalization of the law of tangents
- The compound angle formulas from the half angle formulas
- \sum_{cyc}\tan\frac\alpha2\tan\frac\beta2\geq4
- Another proof of Euler inequality via the half-angle formulas