Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js

sábado, 20 de junio de 2020

Proofs and applications of two well-known formulae involving sine, cosine and the semiperimeter of a triangle

In Cut-the-knot's Relations between various elements of a triangle, the formulae (a generalization can be found here)

\sin^2{\frac{\gamma}{2}} = \frac{(s-a)(s-b)}{ab}\quad and\quad\cos^2{\frac{\gamma}{2}}= \frac{s(s-c)}{ab} 

are derived using Heron's formulaHere we give an alternative proof without using Heron's Formula and we demonstrate several well-known theorems based on these formulae as a sample of its power. We will be using standard notation: BC=a, AC=b, AB=c, \Delta for the area, s for the semiperimeter, R for the circumradius and r for the inradius. Let D, E and F be the contact points of the incircle with AC, AB and BC, respectively. Also, let AE=AD=x; BE=BF=y; CD=CF=z.



Notice that \frac{\cot{\frac{\gamma}{2}}}{s-c} = \frac{1}{r}. Also, We know Δ = rs and Δ =\frac {ab\sin{\gamma}}{2}, hence

\frac{\cot{\frac{\gamma}{2}}}{s-c}=\frac{1}{r}=\frac{s}{\Delta}=\frac{2s}{ab\sin{\gamma}}

But, \sin{\gamma} = 2\sin{\frac{\gamma}{2}}\cos{\frac{\gamma}{2}}, so 
 
\frac{\cos{\frac{\gamma}{2}}}{\sin{\frac{\gamma}{2}}}\cdot{\sin{\frac{\gamma}{2}}\cos{\frac{\gamma}{2}}} = \frac{s(s-c)}{ab}

from which we get \cos^2{\frac{\gamma}{2}} = \frac{s(s-c)}{ab}.
 
The other formula can be obtained replacing \cos^2{\frac{\gamma}{2}} by 1 - \sin^2{\frac{\gamma}{2}}. Indeed, 

\begin{aligned} 1-\sin^2{\frac{\gamma}{2}} &= \frac{s(s-c)}{ab} \\ \sin^2{\frac{\gamma}{2}} &= 1-\frac{s(s-c)}{ab} \\  &= \frac{\left(ab-s(s-c)\right)}{ab} \\ &= \frac{\left((y+z)(x+z)-(x+y+z)(z)\right)}{ab}\\ &= \frac{xy}{ab} \\ &=\frac{(s-a)(s-b)}{ab} \end{aligned}

\square

Geometrical proofs can be found at Trigonography.com.

1. A proof of Heron's Formula
Making use of the formulae proven above and the double angle identity for sine we have

\sin{\gamma}=2\sqrt{\frac{s(s-c)}{ab}}\sqrt{\frac{(s-a)(s-b)}{ab}}=2\frac{\sqrt{s(s-a)(s-b)(s-c)}}{ab}

Since \Delta=\frac{ab\sin{\gamma}}{2}, it follows 

\Delta=\sqrt{s(s-a)(s-b)(s-c)}

\square

2. A proof of the Law of Cosines
Since (s-a)=x, (s-b)=y and (s-c)=z, then the following identity holds:
ab\cos{\gamma}=ab\cos^2{\frac{\gamma}{2}}-ab\sin^2{\frac{\gamma}{2}}=s(s-c)-(s-a)(s-b)
Substituting and multiplying by 4, 
4ab\cos{\gamma}=(a+b+c)(a+b-c)-(b+c-a)(a+c-b)
Expanding and Simplifying,
2ab\cos{\gamma}=a^2+b^2-c^2
\square

A similar reasoning must show that a^2=b^2+c^2-2bc\cos{\alpha} and b^2=a^2+c^2-2ac\cos{\beta}.


3. Proofs for some trigonometric identities associated to a triangle
a) \tan{\frac{\alpha}{2}}\tan{\frac{\beta}{2}}+\tan{\frac{\alpha}{2}}\tan{\frac{\gamma}{2}}+\tan{\frac{\beta}{2}}\tan{\frac{\gamma}{2}}=1.

As a consequence of the formulae proven at the beginning of the note,

\tan{\frac{\alpha}{2}}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}, \quad\tan{\frac{\beta}{2}}=\sqrt{\frac{(s-a)(s-c)}{s(s-b)}}\quad and \quad \tan{\frac{\gamma}{2}}=\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}

 So, by canceling and simplifying you get

\begin{aligned}\tan{\frac{\alpha}{2}}\tan{\frac{\beta}{2}}+\tan{\frac{\alpha}{2}}\tan{\frac{\gamma}{2}}+\tan{\frac{\beta}{2}}\tan{\frac{\gamma}{2}} &=\frac{s-c}{s}+\frac{s-b}{s}+\frac{s-a}{s}\\ &=\frac{z+y+x}{s}\\ &=\frac{s}{s}=1\end{aligned}

\square

b) r=4R\sin{\frac{\alpha}{2}}\sin{\frac{\beta}{2}}\sin{\frac{\gamma}{2}}.

We make use of the well-known relationship abc=4R\Delta (see here for a proof) and Heron's Formula.

\begin{aligned}r&=4R\sin{\frac{\alpha}{2}}\sin{\frac{\beta}{2}}\sin{\frac{\gamma}{2}}\\ &=4R\sqrt{\frac{(s-b)(s-c)}{bc}}\sqrt{\frac{(s-a)(s-c)}{ac}}\sqrt{\frac{(s-a)(s-b)}{ab}}\\&=4R\sqrt{\frac{(s-a)^2(s-b)^2(s-c)^2}{a^2b^2c^2}}\\&=4R\sqrt{\frac{\frac{\Delta^4}{s^2}}{a^2b^2c^2}}\\&=4R\sqrt{\frac{\frac{\Delta^4}{s^2}}{16R^2\Delta^2}}\\&=\frac{\Delta}{s}\\&=\frac{rs}{s}\\&=r\end{aligned}

\square

c) s=4R\cos{\frac{\alpha}{2}}\cos{\frac{\beta}{2}}\cos{\frac{\gamma}{2}}.

\begin{aligned}s&=4R\cos{\frac{\alpha}{2}}\cos{\frac{\beta}{2}}\cos{\frac{\gamma}{2}}\\ &=4R\sqrt{\frac{s(s-a)}{bc}}\sqrt{\frac{s(s-b)}{ac}}\sqrt{\frac{s(s-c)}{ab}}\\&=4R\sqrt{\frac{s^2\Delta^2}{a^2b^2c^2}}\\&=4R\frac{s\Delta}{abc}\\&=4R\frac{s\Delta}{4R\Delta}\\&=s\end{aligned}

\square


Consequently, the following relationship also holds

\tan{\frac{\alpha}{2}}\tan{\frac{\beta}{2}}\tan{\frac{\gamma}{2}}=\frac{r}{s}

or

\cot{\frac{\alpha}{2}}\cot{\frac{\beta}{2}}\cot{\frac{\gamma}{2}}=\frac{s}{r}

d) \cot{\frac{\alpha}{2}}\cot{\frac{\beta}{2}}\cot{\frac{\gamma}{2}}=\cot{\frac{\alpha}{2}}+\cot{\frac{\beta}{2}}+\cot{\frac{\gamma}{2}}.

To prove the above identity we will show that the right hand side equals \frac{s}{r}.

\begin{aligned}\frac{s}{r}&= \cot{\frac{\alpha}{2}}\cot{\frac{\beta}{2}}\cot{\frac{\gamma}{2}}=\cot{\frac{\alpha}{2}}+\cot{\frac{\beta}{2}}+\cot{\frac{\gamma}{2}}\\&=\frac{\sqrt{s(s-a)}}{\sqrt{(s-b)(s-c)}}+\frac{\sqrt{s(s-b)}}{\sqrt{(s-a)(s-c)}}+\frac{\sqrt{s(s-c)}}{\sqrt{(s-a)(s-b)}}\\&=\frac{\Delta(s-a)+\Delta(s-b)+\Delta(s-c)}{(s-a)(s-b)(s-c)}\\&=\frac{\Delta(x+y+z)}{xyz}\\&=\Delta\frac{s^2}{\Delta^2}\\&=\frac{s^2}{rs}\\&=\frac{s}{r}\end{aligned}

\square


We invite the reader to prove the following identity (possibly new) on their own.
\frac{\cot{\frac{\alpha}{2}}\cot{\frac{\beta}{2}}+\cot{\frac{\alpha}{2}}\cot{\frac{\gamma}{2}}+\cot{\frac{\beta}{2}}\cot{\frac{\gamma}{2}}}{(s-a)(s-b)+(s-a)(s-c)+(s-b)(s-c)}=\frac{1}{r^2}


4. The product AI\cdot{BI}\cdot{CI}
Consider a triangle \triangle{ABC} and its Incenter, I. Denote R and r the circumradius and inradius, respectively. Also let AI=k; BI=l; CI=m. Then, the following identity holds

klm=4Rr^2

Proof. We make use of the half-angle formula, 

\cos^2{\frac{\gamma}{2}}= \frac{s(s-c)}{ab}
 
Notice that \cos{\frac{\gamma}{2}}=\frac{(s-c)}{m}. Also, because of half-angle formula we have \cos{\frac{\gamma}{2}}=\sqrt{\frac{s(s-a)}{ab}}. Equating both expressions and solving for m^2

m^2=\frac{ab(s-c)}{s}

Similarly you get k^2=\frac{bc(s-a)}{s} and l^2=\frac{ac(s-b)}{s}. Hence, 

(klm)^2=\frac{a^2b^2c^2(s-a)(s-b)(s-c)}{s^3}=\frac{a^2b^2c^2s(s-a)(s-b)(s-c)}{s^4}

Substituting from Heron's formula,

(klm)^2=\frac{a^2b^2c^2\Delta^2}{s^4}

Simplifying and using the well-known formulas abc=4R\Delta and \Delta=rs you get the desired result. 

klm=\frac{abc\Delta}{s^2}=\frac{4R\Delta^2}{s^2}=4Rr^2

See also

viernes, 5 de junio de 2020

Yet Another Proof of the Law of Cosines

The law of cosines relates the lengths of the sides of a triangle to the cosine of one of its angles. Using standard notation, the law of cosines states

c^2=a^2+b^2-2ab\cos{\gamma},

where \gamma denotes the angle contained between sides of lengths a and b and opposite the side of length c. For the same figure, the other two relations are analogous:

a^2=b^2+c^2-2ac\cos{\alpha},
b^2=a^2+c^2-2ac\cos{\beta}.

Proof. Let D, E and F be the contact points of the incircle with AC, AB and BC, respectively. Also, let AE=AD=x; BE=BF=y; CD=CF=z. We start from two well-known relationships of a triangle: \sin^2{\frac{\gamma}{2}}=\frac{(s-a)(s-b)}{ab} \qquad\text{and}\qquad \cos^2{\frac{\gamma}{2}}=\frac{s(s-c)}{ab}  
(See Cut-the-knot's Relations between various elements of a triangle for proofs), where s denotes the semiperimeter of \triangle{ABC}. Since (s-a)=x, (s-b)=y and (s-c)=z, then the following identity holds:
ab\cos{\gamma}=ab\cos^2{\frac{\gamma}{2}}-ab\sin^2{\frac{\gamma}{2}}=sz-xy
Substituting and multiplying by 4, 
4ab\cos{\gamma}=(a+b+c)(a+b-c)-(b+c-a)(a+c-b)
Simplifying,
2ab\cos{\gamma}=a^2+b^2-c^2
\square

A similar reasoning must show that a^2=b^2+c^2-2bc\cos{\alpha} and b^2=a^2+c^2-2ac\cos{\beta}.

AcknowledgementMy sincerest thanks to Angina Seng for giving helpful comments which allowed me to simplify the proof.

Related material.