Processing math: 0%

sábado, 4 de julio de 2020

Killing three birds with one stone

In this note we derive Heron's formula, Brahmagupta's formula and the bicentric quadrilateral's area formula, \sqrt{abcd}, from two formulae involving sine, cosine, semiperimeter and the side lenghts of a cyclic quadrilateral. 

Let ABCD be a cyclic quadrilateral with AB=a, BC=b, CD=c, DA=d and s=\frac{a+b+c+d}{2}. If \angle{BAD}=\alpha, then



\sin^2{\frac{\alpha}{2}}=\frac{(s-a)(s-d)}{ad+bc}\quad and \quad \cos^2{\frac{\alpha}{2}}=\frac{(s-b)(s-c)}{ad+bc}\tag{1}

or 

sin^2{\frac{\alpha}{2}}=\frac{(a+b+c-d)(-a+b+c+d)}{4(ad+bc)}\quad and \quad cos^2{\frac{\alpha}{2}}=\frac{(a+b-c+d)(a-b+c+d)}{4(ad+bc)}\tag{2}

Proof. First we will find an expression for \cos{\alpha} in terms of a, b, c and d. Let \angle{BCD}=\gamma. By the Law of Cosines and keeping in mind that \alpha and \gamma are supplementary, we have

a^2+d^2-2ad\cos{\alpha}=b^2+c^2-2bc\cos{(180^\circ-\alpha)}\tag{3}

Yielding \cos{\alpha}=\frac{a^2+d^2-b^2-c^2}{2(ad+bc)}. Now, making use of the half angle formula for cosine,

\begin{align*} \cos^2{\frac{\alpha}{2}}&=\frac{2ad+2bc+a^2+d^2-b^2-c^2}{4(ad+bc)}\tag{4}\\ &=\frac{(a+d)^2-(b-c)^2}{4(ad+bc)}\tag{5}\\&=\frac{(a+b-c+d)(a-b+c+d)}{4(ad+bc)}\tag{6}\\&=\frac{1}{ad+bc}\left(\frac{a+b+c+d}{2}-c\right)\left(\frac{a+b+c+d}{2}-b\right)\tag{7}\\&=\frac{(s-b)(s-c)}{ad+bc}\end{align*}

\square

The other formulae can be obtained similarly by replacing \cos^2{\frac{\alpha}{2}} by 1 - \sin^2{\frac{\alpha}{2}}.

A generalization of (1) together with a proof of Bretschneider's formula can be found here.

Remark(1) appears as exercise 400 in V. Panagiotis' 1000 General Trigonometry Exercises, Volume B.

A proof of Heron's Formula
For a triangle, if in (1) we assume c=0, then we have

\sin^2{\frac{\alpha}{2}}=\frac{(s-a)(s-d)}{ad}\quad and \quad \cos^2{\frac{\alpha}{2}}=\frac{s(s-b)}{ad}\tag{8}


Let \Delta_0 be the area of \triangle{ABD}. Making use of the double-angle identity for sine we have

\sin{\alpha}=2\sqrt{\frac{s(s-b)}{ad}}\sqrt{\frac{(s-a)(s-d)}{ad}}=2\frac{\sqrt{s(s-a)(s-b)(s-d)}}{ad}\tag{9}

Since \Delta_0=\frac{ad\sin{\alpha}}{2}, it follows 

\Delta_0=\sqrt{s(s-a)(s-b)(s-d)}\tag{10}

\square

For more implications in a triangle see here.

A proof of the Brahmagupta's formula
Denote \Delta_1 the area of the cyclic quadrilateral, ABCD. Then

\begin{align*}\Delta_1&=\frac{ad\sin{\alpha}}{2}+\frac{bc\sin{(180^\circ-\alpha)}}{2}\tag{11}\\&=\frac{ad\sin{\alpha}}{2}+\frac{bc\sin{\alpha}}{2}\tag{12}\\&=\sin{\frac{\alpha}{2}}\cos{\frac{\alpha}{2}}(ad+bc)\tag{13}\\&=\sqrt{\frac{(s-a)(s-d)}{ad+bc}}\sqrt{\frac{(s-b)(s-c)}{ad+bc}}(ad+bc)\tag{14}\\&=\sqrt{(s-a)(s-b)(s-c)(s-d)}\tag{15}\end{align*}

\square

A proof of the bicentric quadrilateral's area formula
Since a+c=b+d in a bicentric quadrilateral, the formulae in (2) reduce to 

sin^2{\frac{\alpha}{2}}=\frac{bc}{ad+bc}\quad and \quad cos^2{\frac{\alpha}{2}}=\frac{ad}{ad+bc}\tag{16}

Assume ABCD is a bicentric quadrilateral and let \Delta_2 be its area, then

\begin{align*}\Delta_2&=\frac{ad\sin{\alpha}}{2}+\frac{bc\sin{(180^\circ-\alpha)}}{2}\tag{17}\\&=\frac{ad\sin{\alpha}}{2}+\frac{bc\sin{\alpha}}{2}\tag{18}\\&=\sin{\frac{\alpha}{2}}\cos{\frac{\alpha}{2}}(ad+bc)\tag{19}\\&=\sqrt{\frac{bc}{ad+bc}}\sqrt{\frac{ad}{ad+bc}}(ad+bc)\tag{20}\\&=\sqrt{abcd}\tag{21}\end{align*}

\square

2 comentarios:

  1. Hola, leí sobre usted en el periódico. Quería confirmar si estas eran las demostraciones a las que hacia referencia y si ha publicado su trabajo en alguna institución formal.

    ResponderEliminar
    Respuestas
    1. Hola, Saulo. Te informo que las demostraciones fueron publicadas por la Universidad de Pitesti (Rumanía) en su revista MATINF. Puedes descargar el documento en el siguiente enlace: http://matinf.upit.ro/MATINF6/index.html#p=4

      Eliminar