Processing math: 100%

martes, 1 de junio de 2021

Using the half-angle formula for cosine to derive Zelich's lemma on mixtilinear incircles

Lemma (Ivan Zelich). Let w be the A-mixtilinear incircle in \triangle{ABC} touching side AB at E, side AC at F. Then

AE=AF=\frac{bc}{s}\tag{1}

where s is the semiperimeter.

Proof 1. The radius of w inscribed in \angle{CAB}=\alpha is given by

\rho_a=r\sec^2{\frac{\alpha}{2}}\tag{2}

where r is the inradius of the reference triangle and \rho_a is the radius of w (Durell and Robson 1935).

A proof of (2) can be found here (see pp. 13).

The half-angle formula for cosine states that 

\cos^2{\frac{\alpha}{2}}=\frac{s(s-a)}{bc}\tag{3}

See here for a proof of (3).

Call I the Incenter of \triangle{ABC} and D the touchpoint between the incircle and AC. Denote K the center of w. Notice that \triangle{AID}\sim\triangle{AKF}. Now, by similarity of triangles we have

\frac{r}{s-a}=\frac{\rho_a}{AF}\tag{4}

Combining (2) and (3) in (4) we get (1).

\square
Proof 2. We can also derive (1) using the relationships \Delta=rs and \Delta=\frac{bc\sin{\alpha}}{2}. Indeed, since 

r=\frac{\Delta}{s}=\frac{\frac{bc\sin{\alpha}}{2}}{s}=\frac{bc\sin{\frac{\alpha}{2}}\cos{\frac{\alpha}{2}}}{s}.

Substituting in (2) and simplifying we get 

\rho_a=r\sec^2{\frac{\alpha}{2}}=\frac{bc}{s}\tan{\frac{\alpha}{2}}=\frac{bc\rho_a}{s\cdot{AF}}

from which the result holds. 

\square

A proof using inversion can be found here

Related material

No hay comentarios:

Publicar un comentario