Let ABCD be a cyclic quadrilateral with sides a, b, c and d. Denote s the semiperimeter and let \angle{DAB}=\alpha, \angle{ABC}=\beta, \angle{BCD}=\gamma and \angle{CDA}=\delta. Then the following inequality holds
\tan{\frac{\alpha}{2}}\tan{\frac{\beta}{2}}+\tan{\frac{\beta}{2}}\tan{\frac{\gamma}{2}}+\tan{\frac{\gamma}{2}}\tan{\frac{\delta}{2}}+\tan{\frac{\delta}{2}}\tan{\frac{\alpha}{2}}\geq4.\tag{1}Proof. Substituting from the half-angle formula for the tangent we have that
\tan{\frac{\alpha}{2}}\tan{\frac{\beta}{2}}=\sqrt{\frac{(s-a)(s-d)}{(s-b)(s-c)}}\cdot{\sqrt{\frac{(s-a)(s-b)}{(s-c)(s-d)}}}=\frac{s-a}{s-c}.Similarly,
\tan{\frac{\beta}{2}}\tan{\frac{\gamma}{2}}=\frac{s-b}{s-d}\qquad\tan{\frac{\gamma}{2}}\tan{\frac{\delta}{2}}=\frac{s-c}{s-a}\qquad\tan{\frac{\delta}{2}}\tan{\frac{\alpha}{2}}=\frac{s-d}{s-b}
Thus, the left-hand side of (1) can be rewritten as follows
\tan{\frac{\alpha}{2}}\tan{\frac{\beta}{2}}+\tan{\frac{\beta}{2}}\tan{\frac{\gamma}{2}}+\tan{\frac{\gamma}{2}}\tan{\frac{\delta}{2}}+\tan{\frac{\delta}{2}}\tan{\frac{\alpha}{2}}=\frac{s-a}{s-c}+\frac{s-b}{s-d}+\frac{s-c}{s-a}+\frac{s-d}{s-b}.But,
\frac{s-a}{s-c}+\frac{s-b}{s-d}+\frac{s-c}{s-a}+\frac{s-d}{s-b}=\frac{a-c}{s-a}+\frac{b-d}{s-b}+\frac{c-a}{s-c}+\frac{d-b}{s-d}+4.\tag{2}Since \frac{a-c}{s-a}+\frac{c-a}{s-c}=\frac{4(a-c)^2}{(-a+b+c+d)(a+b-c+d)}, and similarly for \frac{b-d}{s-b}+\frac{d-b}{s-d}, then \frac{a-c}{s-a}+\frac{b-d}{s-b}+\frac{c-a}{s-c}+\frac{d-b}{s-d} is positive. Hence,
\tan{\frac{\alpha}{2}}\tan{\frac{\beta}{2}}+\tan{\frac{\beta}{2}}\tan{\frac{\gamma}{2}}+\tan{\frac{\gamma}{2}}\tan{\frac{\delta}{2}}+\tan{\frac{\delta}{2}}\tan{\frac{\alpha}{2}}\geq4.
\square
Notice equality holds when ABCD is rectangular.
From (2) it also follows that
\tan{\frac{\alpha}{2}}\tan{\frac{\beta}{2}}+\tan{\frac{\beta}{2}}\tan{\frac{\gamma}{2}}+\tan{\frac{\gamma}{2}}\tan{\frac{\delta}{2}}+\tan{\frac{\delta}{2}}\tan{\frac{\alpha}{2}}>\frac{a-c}{s-a}-\frac{a-c}{s-c}+\frac{b-d}{s-b}-\frac{ b-d}{s-d}.
A huge list of inequalities can be seen at Cut-the-knot.org.
No hay comentarios:
Publicar un comentario