Loading [MathJax]/extensions/MathEvents.js

sábado, 25 de junio de 2022

Another proof of Euler inequality via the half-angle formulas

The Euler's inequality is an immediate consequence of Euler's identity in a triangle,
OI^2=R^2−2Rr.
An additional proof of Euler's inequality is given at Elias Lampakis, Am Math Monthly, 122 (9), November 2015, p 892. Now, continuing with this madness of proving everything from the half-angle formulas, we give an alternative proof of Euler's inequality.

Theorem (Euler): If R and r are the circumradius and, respectively, the inradius of a triangle, then
R\geq2r.\tag{1}

Proof. Let a, b and c be the sides of \triangle{ABC}. Denote s its semiperimeter and \angle{BAC}=\alpha. It is easy to show that 
(s-a)\tan{\frac{\alpha}{2}}=r.\tag{2}
Also, it is well-known that
\frac{abc}{4\Delta}=R\qquad and \qquad\Delta=\frac{bc\sin{\alpha}}{2},\tag{3}
where \Delta is the area of \triangle{ABC}. Substituting (2) and (3) in (1) we have
\begin{aligned}\frac{abc}{4\Delta}&\geq(-a+b+c)\tan{\frac{\alpha}{2}}\\\frac{abc}{4bc\sin{\frac{\alpha}{2}}\cos{\frac{\alpha}{2}}}&\geq(-a+b+c)\tan{\frac{\alpha}{2}}\\abc&\geq(-a+b+c)(4bc\sin^2{\frac{\alpha}{2}})\\abc&\geq(-a+b+c)(a-b+c)(a+b-c)\end{aligned}
This is Padoa's inequality, so the proof is complete.

No hay comentarios:

Publicar un comentario