Processing math: 100%

sábado, 14 de diciembre de 2019

Perpendicularity in a right-triangle

This problem was proposed by Anthony Becerra in the Facebook group "Romantics of Geometry".

Consider a right-triangle ABC with \angle{ABC}=90^\circ. Let P, Q and R be on sides AB, BC and AC, respectively, such that BPRQ is a square. Call X the intersection of AQ and CP. Prove that BX\perp{AB}.


Proof. By Ceva's theorem, \frac{AH}{CH}\cdot{\frac{CQ}{BQ}}\cdot{\frac{BP}{AP}}=1. By similarity, \frac{CR}{AC}=\frac{CQ}{BC}; \frac{BQ}{BC}=\frac{AR}{AC}, then, \frac{CQ}{BQ}=\frac{CR}{AR}. But, because of the Angle Bisector theorem, \frac{CR}{AR}=\frac{BC}{AB}. Now, as \triangle{APR}\sim\triangle{CQR}, it follows \frac{BP}{AP}=\frac{CR}{AR}=\frac{BC}{AB}. Back to Ceva: \frac{AH}{CH}\cdot{\frac{BC^2}{AB^2}}=1, which implies the perpendicularity by the converse of Euclid's theorem.

No hay comentarios:

Publicar un comentario