Processing math: 0%

domingo, 29 de diciembre de 2019

Conics intersecting the sides of a triangle

Problem 1. Consider a triangle ABC and a parabola, P_a, whose focus is A and directrix, BC. Call C_a, B_a the intersections of P_a with the sides AB, AC, respectively. Define A_b, C_b, A_c and B_c cyclically. Prove that C_a, B_aA_b, C_b, A_c and B_c lie on a conic. 




My proof can be found here and a generalization (by Barry Wolk) here.

The external version.


Problem 2. Consider a triangle, ABC, and its Incenter, I. A perpendicular line to AI in I, cut the sides AB, in A_c, and AC, in A_bDefine B_c, B_a, C_a and C_b cyclically. Prove that A_c, A_b, B_c, B_a, C_a and C_b lie on a conic.


My proof (in Spanish) can be found here.

Problem 3. Consider a triangle ABC and its A-mixtilinear incircle, \tau_a. Call A_b the intersection of \tau_a with the side BC closer to B. Define A_c similarly. Construct B_a, B_c, C_a and C_b cyclically. Prove that A_b,  A_cB_a, B_c, C_a and C_b lie on a conic. 


A proof by Ivan Zelich can be found here.

Problem 4. Let ABC be a triangle and DEF its orthic triangle. Construct a parabola, P_a, being F and line DE its focus and directrix, respectively. Prove that this parabola is tagential to sides AB, AC and to the altitudes BD, CE


My proof can be found here.

Problem 4-a. Consider the parabola, P_a, described in problem 4. Let A_b be the intersection of P_a with the side BC closer to B. Define A_c similarly. Construct B_c, B_a, C_a and C_b cyclically. Prove that  A_bA_cB_c, B_a, C_a and C_b lie on a conic. 


A proof by Ivan Zelich can be found here.

Problem 4-b. Consider again the parabola, P_a described in problem 4. Call A'_b and A'_c the points of tangency of P_a with the sides AB and AC, respectively. Construct B'_c, B'_a, C'_a and C'_b cyclically. Prove that A'_bA'_cB'_c, B'_a, C'_a and C'_b lie on a conic.  



Problem 5. Let O_a, O_b and O_c be the centers of three congruent circles. Let the line AB be a common tangent line to the circles O_a and O_b farther from O_c. Construct lines BC and AC similarly. Let CO_a meet AB in C_a. Similarly construct C_b. Define A_b, A_c, B_c and B_a cyclically. Prove that C_aC_bA_b, A_c, B_c and B_a lie on a circle. (Not proven yet.)



Problem 6. Consider two points, P and Q, in the interior of a triangle, ABC. Let \triangle{P_aP_bP_c} and \triangle{Q_aQ_bQ_c} be the cevian triangles of P and Q, respectively. Construct outwardly semicircles with diameters BP_a and CQ_a. Let A_1 be the second intersection of semicircle (BP_a) with the circumcircle of ABC. Define A_2 similarly. Denote A_b the intersection of AA_1 and BC. Define A_c similarly. Construct B_c, B_a, C_a and C_b cyclically. Prove that A_bA_cB_c, B_a, C_a and C_b lie on a conic. (Not proven yet.)



Related material.
Carnot's theorem (conics)
Conics Related To In- and Excircles

martes, 24 de diciembre de 2019

Solución alternativa a un problema de admisión

Considera un cuadrado ABCD. E y F son puntos en los lados DC y AD, respectivamente. Si \angle{EFB}=90^\circ, BF=4, EF=3 y BE=5, determina la longitud del segmento CE=x.



Solución. Note que \angle{EFB}+\angle{ECB}=180^\circ, por lo que el cuadrilátero BFEC es cíclico. Por propiedad de ángulos inscritos en una misma circunferencia, los ángulos \angle{FCE} y \angle{FBE} son congruentes (intersecan un mismo arco). Pero \angle{FCE}=\angle{FCD}, implicando que \triangle{BFE}\sim\triangle{CDF}, de donde resulta la siguiente proporción:

\frac{CF}{5}=\frac{a}{4},

donde a es la longitud de los lados del cuadrado.



Podemos expresar el segmento CF en términos de x y a por medio del teorema de Ptolomeo, es decir, 

3a+4x=5CF

De vuelta a nuestra proporción, 

\frac{\frac{3a+4x}{5}}{5}=\frac{a}{4}

Despejando para x, resulta

x=\frac{13a}{16}

Aplicando Pitágoras en el triángulo \triangle{BCE}

\left(\frac{13a}{16}\right)^2+a^2=25

Resolviendo para a y descartando valores negativos, obtenemos a=\frac{16\sqrt{17}}{17}. Finalmente, x=\frac{13a}{16}=\frac{13}{16}\cdot{\frac{16\sqrt{17}}{17}}=\frac{13\sqrt{17}}{17}\approx3.15296312...

sábado, 14 de diciembre de 2019

Perpendicularity in a right-triangle

This problem was proposed by Anthony Becerra in the Facebook group "Romantics of Geometry".

Consider a right-triangle ABC with \angle{ABC}=90^\circ. Let P, Q and R be on sides AB, BC and AC, respectively, such that BPRQ is a square. Call X the intersection of AQ and CP. Prove that BX\perp{AB}.


Proof. By Ceva's theorem, \frac{AH}{CH}\cdot{\frac{CQ}{BQ}}\cdot{\frac{BP}{AP}}=1. By similarity, \frac{CR}{AC}=\frac{CQ}{BC}; \frac{BQ}{BC}=\frac{AR}{AC}, then, \frac{CQ}{BQ}=\frac{CR}{AR}. But, because of the Angle Bisector theorem, \frac{CR}{AR}=\frac{BC}{AB}. Now, as \triangle{APR}\sim\triangle{CQR}, it follows \frac{BP}{AP}=\frac{CR}{AR}=\frac{BC}{AB}. Back to Ceva: \frac{AH}{CH}\cdot{\frac{BC^2}{AB^2}}=1, which implies the perpendicularity by the converse of Euclid's theorem.