miércoles, 17 de julio de 2024

Showing $\frac{1}{e^{i\alpha_2}} + \frac{1}{e^{i\beta_2}} + \frac{1}{e^{i\gamma_2}} = \frac{1}{e^{i(\alpha_2+\beta_2+\gamma_2)}}$

Let $x$ be any of $\alpha_1$, $\beta_1$, or $\gamma_1$ and suppose $\alpha_1+\beta_1+\gamma_1=\pi$. Then

$$e^{i(\alpha_2+\beta_2)}+e^{i(\alpha_2+\gamma_2)}+e^{i(\beta_2+\gamma_2)}=1\qquad \left(x \in \mathbb{R} : \frac{x + \pi}{2\pi} \not\in \mathbb{Z}\right)\tag{1}$$
or
$$\frac{1}{e^{i\alpha_2}} + \frac{1}{e^{i\beta_2}} + \frac{1}{e^{i\gamma_2}} = \frac{1}{e^{i(\alpha_2+\beta_2+\gamma_2)}},\qquad \left(x = 2\pi n + \pi, \quad n \in \mathbb{Z}\right) \tag{2}$$

where complex $\alpha_2=\cos^{-1}(\csc(\alpha_1))$ and similarly for $\beta_2$ and $\gamma_2$.

The identities $(1-2)$ are consequences of Theorem 1 in this blog post and the trigonometric identities 3 and 4 (counting from top to bottom) in this list.

Addendum: generalize $(1-2)$.

jueves, 21 de marzo de 2024

A new integration technique via Euler-like identities

"Complexification formulas are great and it seems like this simplifies the right away."
- Ninad Munshi


Introduction

While investigating a way to further generalize my own extension of Newton’s formula to arbitrary quadrilaterals, I stumbled—by sheer serendipity—upon an entire family of trigonometric and hyperbolic formulas for the roots of quadratic equations. These formulas, which I originally showcased in a separate note, turned out to be surprisingly rich. In particular, they connect in elegant ways to certain identities useful for a variety of integrals. I have compiled the complete set of these quadratic root formulas (see the box of Formulas I–VI below), with further details posted in A family of trigonometric formulas for the roots of quadratic equations.

Let me briefly highlight two classical techniques that intertwine in fascinating ways:

Euler’s celebrated identity, $e^{i\phi} = \cos(\phi) + i\sin(\phi)$, is well known for its power in simplifying integrals by converting sines and cosines into exponentials—and for enabling elegant treatments of Fourier transforms and other advanced tools in analysis.  

Often referred to as the Weierstrass substitution, $t = \tan(\phi/2)$, this method simplifies numerous trigonometric integrals by transforming them into rational expressions. As Henning Dathe of the University of Göttingen details in Die Halbwinkelsubstitution und ihre Anwendungen, half-angle substitutions find widespread use well beyond integral calculus, including stereographic projection, solving Riccati equations, trigonometric equations, rotation kinematics, and more. By the way, in an essay titled The Theoretical Importance of Half-Angle Formulas, I have argued for the theoretical centrality of half-angle formulas in general.

Given this broad scope, one might wonder whether Euler’s formula and the tangent half-angle substitution are, in fact, just two sides of the same coin. Indeed, Theorem 1 below strongly suggests exactly that. 

In the separate note alluded to above, I established several theorems (I–VI) for solving the quadratic equation
$$ax^2 + bx + c = 0\quad (a,b,c \neq 0),$$
each employing a different trigonometric or hyperbolic parameter. For clarity in this note, let us denote these parameters by $\alpha', \beta', \gamma', \delta', \eta', \theta'$ (instead of $\alpha, \beta, \gamma, \dots$) to avoid clashes with other symbols used here. The solutions can be gathered into the single box below:

$$\boxed{x_{1,2} \;=\;\begin{cases}\displaystyle\text{(I)} \quad i\,e^{\,i\alpha'}\!\sqrt{\tfrac{c}{a}},\;\;-\>i\,e^{\,i\alpha'}\!\sqrt{\tfrac{c}{a}}, & \alpha' = \sin^{-1}\!\Bigl(\tfrac{b}{2\sqrt{ac}}\Bigr),\\[6pt]
\displaystyle\text{(II)} \;-\>\tan\!\Bigl(\tfrac{\beta'}{2}\Bigr)\!\sqrt{\tfrac{c}{a}},\; -\>\cot\!\Bigl(\tfrac{\beta'}{2}\Bigr)\!\sqrt{\tfrac{c}{a}},& \beta' = \csc^{-1}\!\Bigl(\tfrac{b}{2\sqrt{ac}}\Bigr),\\[6pt]\displaystyle\text{(III)} \;\>e^{\,i\gamma'}\!\sqrt{\tfrac{c}{a}},\;\;-\>e^{-\,i\gamma'}\!\sqrt{\tfrac{c}{a}},& \gamma' = \cos^{-1}\!\Bigl(\tfrac{b}{2\sqrt{ac}}\Bigr),\\[6pt]\displaystyle
\text{(IV)} \;\;\frac{\tan\!\bigl(\tfrac{\delta'}{2}\bigr)\,\pm\,1}{\tan\!\bigl(\tfrac{\delta'}{2}\bigr)\,\mp\,1}\,\sqrt{\tfrac{c}{a}},
& \delta' = \sec^{-1}\!\Bigl(\tfrac{b}{2\sqrt{ac}}\Bigr),\\[6pt]
\displaystyle\text{(V)} \;\;\frac{i \,\pm\, e^{\eta'}}{\,i \,\mp\, e^{\eta'}}\,\sqrt{\tfrac{c}{a}},& \eta' = \tanh^{-1}\!\Bigl(\tfrac{b}{2\sqrt{ac}}\Bigr),\\[6pt]\displaystyle\text{(VI)} \;\;\frac{1 \,\pm\, e^{\theta'}}{\,1 \,\mp\, e^{\theta'}}\,\sqrt{\tfrac{c}{a}},
& \theta' = \coth^{-1}\!\Bigl(\tfrac{b}{2\sqrt{ac}}\Bigr).\\
\end{cases}}$$

In deriving these results, I noticed that Theorem 1 and Theorem 2  emerged naturally from equating and simplifying the respective expressions in (II)–(III) and in (III)–(IV). This interrelation, among others, underpins the unifying theme in these formulas and ties directly back to our original question of whether complex exponentials and half-angle substitutions are intimately related.

I am excited to present the Unified Substitution Method (USM), a comprehensive approach that synthesizes and extends (to irrational integrals) two classical techniques for tackling integrals: the use of complex exponentials for trigonometric functions and the tangent half-angle substitution. In certain cases, the USM’s transformations (which are summarized at the end of this note) even yield rational expressions reminiscent of those derived through Euler substitutions.

In what follows, you will see the journey I embarked upon in constructing this method. A parallel paper, where Theorem 1 and Theorem 2 have been generalized and rigorously proven, is currently in development. Here, I present illustrative examples to showcase the method’s power. Enjoy!

Some Euler-like identities

Theorem 1. If complex $\alpha=\cos^{-1}(x)$ and $\beta=\csc^{-1}(x)$, where real $x\in[1, \infty)$, then the following relation holds:

\[\boxed{e^{i\alpha}=\tan\left(\frac{\beta}{2}\right)}\tag{1}\]

In the complex plane, for real $x\in[0, 1]$, we have

\[\boxed{e^{-i\alpha}=\tan\left(\frac{\beta}{2}\right)}\tag{2}\]

 Proof. Consider the left-hand side of equation $(1)$. By Euler's formula and properties of inverse trigonometric functions, the exponential $e^{i\cos^{-1}(x)}$ can be rewritten as follows.

\[e^{i\cos^{-1}{(x)}}=\cos{(\cos^{-1}{(x)})}+i\sin{(\cos^{-1}{(x)})}=x+i\sqrt{1-x^2}\]

The right-hand side of $(1)$ can be written as follows.


\[\tan{\left(\frac{\csc^{-1}{(x)}}{2}\right)}=\frac{\sin{(\csc^{-1}{(x)}})}{1+\cos{(\csc^{-1}{(x)}})}=\frac{\frac{1}{x}}{1+\frac{\sqrt{x^2-1}}{x}}=x-\sqrt{x^2-1}\]

Now we just need to find the solution set for non-negative real $x$ of the following complex equation.

\[x+i\sqrt{1-x^2}=x-\sqrt{x^2-1}\tag{3}\]

Clearly, equation $(3)$ is true for $x=1$. For $x>1$, it follows that $1-x^2<0$, and therefore, the left-hand side of $(3)$ simplifies to $x-\sqrt{x^2-1}$. Consequently, equation $(3)$ is true for $x\geq1$.

For identity $(2)$, equation $(3)$ becomes

\[x-i\sqrt{1-x^2}=x-\sqrt{x^2-1}\tag{4}\]

If $0 \leq x \leq 1$, then $x^2 - 1 < 0$. Therefore, the right-hand side of equation $(4)$ can be rewritten as $x - i\sqrt{1 - x^2}$, making equation $(4)$ valid for $[0, 1]$ in the complex plane.

$\square$

The functions on both sides of identity $(1)$ are continuous for $x \geq 1$. And for identity $(2)$, continuity is guaranteed on $[0, 1]$ for complex numbers.

Remark If complex $\alpha=\cos^{-1}(x)$ and $\beta=\csc^{-1}(x)$, where real $x\in[-1, 1]$, then the following relation holds:

\[\boxed{e^{i\alpha}=\cot\left(\frac{\beta}{2}\right)}\tag{5}\]

This is true because identity $(5)$ can be rewritten as:

\[x+i\sqrt{1-x^2}=x+\sqrt{x^2-1}\tag{6}\]

And the solution set of $(6)$ is $x \in [-1, 1]$.

Theorem 2. If complex $\alpha=\cos^{-1}(x)$ and $\gamma=\sec^{-1}(x)$, where real $x\in [1, \infty)$, then the following relation holds:

\[\boxed{e^{i\alpha}=\frac{1-\tan\left(\frac{\gamma}{2}\right) }{1+\tan\left(\frac{\gamma}{2}\right)}}\tag{7}\]

In the complex plane, for $x\in [0, 1]$, we have

\[\boxed{e^{-i\alpha}=\frac{1-\tan\left(\frac{\gamma}{2}\right) }{1+\tan\left(\frac{\gamma}{2}\right)}} \tag{8}\]

Proof. By property of inverse trigonometric functions we have

\[\tan{\left(\frac{\sec^{-1}(x)}{2}\right)}=\frac{\sin{(\sec^{-1}(x))}}{1+\cos{(\sec^{-1}(x))}}=\frac{\frac{\sqrt{x^2-1}}{x}}{1+\frac{1}{x}}=\frac{\sqrt{x-1}}{\sqrt{x+1}}\]

Substituting into the right-hand side of identity $(7)$, we obtain

$$\frac{1-\tan\left(\frac{\gamma}{2}\right)}{1+\tan\left(\frac{\gamma}{2}\right)}=\frac{1-\frac{\sqrt{x-1}}{\sqrt{x+1}}}{1+\frac{\sqrt{x-1}}{\sqrt{x+1}}}=x-\sqrt{x^2-1}$$

Hence, the same argument for Theorem 1 applies to Theorem 2, and both identities $(7)$ and $(8)$ are continuous on their respective intervals, with identity $(8)$ being valid in the complex plane.

$\square$

For $x\in[1,\infty)$, identity $(7)$ can be rewritten as follows:

\[\boxed{\tan{\left(\frac{\gamma}{2}\right)}=\frac{1-e^{i\alpha}}{1+e^{i\alpha}}}\tag{9}\]

And in the complex plane, for $x\in[0, 1]$, identity $(8)$ can be rewritten as follows:

\[\boxed{\tan{\left(\frac{\gamma}{2}\right)}=\frac{1-e^{-i\alpha}}{1+e^{-i\alpha}}}\tag{10}\]

Remark For similar reasons to those given for identity $(5)$, for \(x \in [-1, 1]\), the following identity holds:

\[\boxed{\cot{\left(\frac{\gamma}{2}\right)}=\frac{1+e^{i\alpha}}{1-e^{i\alpha}}}\tag{11}\]

Applications

Example 1. Evaluate \[\int_{1}^{2}\sqrt[3]{\tan{\left(\frac12\csc^{-1}(x)\right)}} \, dx\tag{12}\]

Solution. Using identity $(1)$, integral $(12)$ becomes:

\[\int_{1}^{2} e^{\frac{1}{3}i\alpha}dx\]

Since $\alpha=\cos^{-1}(x)\implies d\alpha=-\frac{1}{\sqrt{1-x^2}}\,dx$ and $x=\cos{(\alpha)}$.

$$\begin{aligned}\int_{1}^{2} e^{\frac{1}{3}i\alpha}dx&= -\int_{1}^{2} e^{\frac{1}{3}i\alpha}\sqrt{1-\cos^2{(\alpha)}}\,d\alpha\\&=-\int_{1}^{2} e^{\frac{1}{3}i\alpha}\sin{(\alpha)}\,d\alpha\\&=-\frac{i}{2}\int_{1}^{2}(e^{-\frac23i\alpha}- e^{\frac43i\alpha})\,d\alpha\qquad (\text{Since $\sin{(\alpha)}=\frac12i(e^{-i\alpha}-e^{i\alpha}$}).)\\&=\frac34e^{-\frac23i\alpha}+\frac38e^{\frac43i\alpha}\bigg|_1^2\\&=\frac38e^{-\frac23i\alpha}(e^{2i\alpha}+2)\bigg|_1^2\\&=\frac{3\left((x-\sqrt{x^2-1})^2+2\right)}{8(x-\sqrt{x^2-1})^{2/3}}\bigg|_1^2\qquad (\text{Changing back to reals.})\\&=\frac{{3(2 + (2 - \sqrt{3})^2)}}{{8(2 - \sqrt{3})^{\frac{2}{3}}}} - \frac{9}{8}\\&\approx0.744\end{aligned}$$

Another approach involves using the simplification $\tan{\left(\frac12\csc^{-1}{(x)}\right)}=x-\sqrt{x^2-1}$. However, this method could lead to more complicated integrals, especially when evaluating rational trigonometric integrals with multiple terms involving $\tan{\left(\frac12\csc^{-1}{(x)}\right)}$ or $\tan{\left(\frac12\sec^{-1}{(x)}\right)}$ or both. Making an appropriate u-substitution might not be immediately obvious in those cases, whereas using identities $(1)$ and $(9)$ quickly turns the integral into an integral of a rational function. As an illustration, let's consider the following example. 

Example 2. Evaluate

\[\int\frac{1}{\tan\left(\frac{1}{2}\csc^{-1} (x)\right) - \tan\left(\frac{1}{2}\sec^{-1}(x)\right)} \, dx\]

Solution. First, we rewrite the integral using the identity $(1)$ and $(9)$:

\[\int \frac{1}{e^{i\alpha} - \frac{1 - e^{i\alpha}}{1 + e^{i\alpha}}} \, dx=\int\frac{1+e^{i\alpha}}{e^{2i\alpha}+2e^{i\alpha}-1}\,dx\]

Similar to how we proceeded in example 1, since $\alpha=\cos^{-1}(x)\implies d\alpha=-\frac{1}{\sqrt{1-x^2}}\,dx$ and $x=\cos{(\alpha)}$. Then

$$\begin{aligned}\int\frac{1+e^{i\alpha}}{e^{2i\alpha}+2e^{i\alpha}-1}\,dx &=-\int\frac{1+e^{i\alpha}}{e^{2i\alpha}+2e^{i\alpha}-1}\sqrt{1-\cos^2(\alpha)}\,d\alpha\\&=-\int\frac{1+e^{i\alpha}}{e^{2i\alpha}+2e^{i\alpha}-1}\sin(\alpha)\,d\alpha\\&=-\frac{i}{2}\int\frac{e^{-i\alpha} - e^{i\alpha} - e^{2i\alpha} + 1}{e^{2i\alpha}+2e^{i\alpha}-1}\,d\alpha\end{aligned}$$

Let $u=e^{i\alpha}\implies du=ie^{i\alpha}\,d\alpha$. Then, putting terms over a common denominator, and factoring, we have

$$-\frac{i}{2}\int\frac{e^{-i\alpha} - e^{i\alpha} - e^{2i\alpha} + 1}{e^{2i\alpha}+2e^{i\alpha}-1}\,d\alpha=\frac12\int\frac{(u - 1) (u + 1)^2}{u^2 (u^2 + 2 u - 1)}\,du$$

At this point, we can proceed by applying partial fraction decomposition.

Remark. In the MathSE forum, I asked about alternative approaches to the integral in example 2. Zacky has suggested the following substitution

$$\int \frac{1}{x-\sqrt{x^2-1}-\sqrt{\frac{x-1}{x+1}}}\,dx \overset{\frac{x-1}{x+1}=t^2}{=}4\int \frac{t}{(1+t)(1-t)^2(1-2t-t^2)}\,dt$$

However, as the reader may have noticed by the degree of the denominator, I would argue that this substitution leads us to a more complicated partial fraction decomposition. Look here and here and compare for yourself. 

The following integral was asked by user SAQ on the MathSE forum.

Example 3. Evaluate

\[ \int\dfrac{\sqrt{x-1}-\sqrt{x+1}}{\sqrt{x-1}-3\sqrt{x+1}}\,dx\]

Solution. We first divide both the numerator and denominator by $\sqrt{x+1}$:

\[\int\dfrac{\sqrt{x-1}-\sqrt{x+1}}{\sqrt{x-1}-3\sqrt{x+1}}\,dx = \int\dfrac{\frac{\sqrt{x-1}}{\sqrt{x+1}}-1}{\frac{\sqrt{x-1}}{\sqrt{x+1}}-3}\,dx\]

Now, we'll substitute $\frac{\sqrt{x-1}}{\sqrt{x+1}}$ with $\frac{1-e^{i\alpha}}{1+e^{i\alpha}}$ using the identity $(9)$:

\[= \int\dfrac{\frac{1-e^{i\alpha}}{1+e^{i\alpha}}-1}{\frac{1-e^{i\alpha}}{1+e^{i\alpha}}-3}\,dx\]

As $\alpha = \cos^{-1}(x)$, then $x = \cos{\alpha}$ and $dx = -\sqrt{1-x^2}\,d\alpha = -\sqrt{1-\cos^2{(\alpha)}}\, d\alpha = -\sin{(\alpha)}\,d\alpha$. Now, we'll perform the substitution:

\[= -\int\dfrac{\frac{1-e^{i\alpha}}{1+e^{i\alpha}}-1}{\frac{1-e^{i\alpha}}{1+e^{i\alpha}}-3}\sin{(\alpha)}\,d\alpha\]

Since $\sin(\alpha) = \frac{i}{2}(e^{-i\alpha} -  e^{i\alpha})$ and simplifying, we get:

\[\frac{i}{2}\int \frac{e^{2i\alpha}-1}{2e^{i\alpha}+1} \, d\alpha\]

Now, let $u = e^{i\alpha}$. Then, $du = ie^{i\alpha}\,d\alpha = iu\,d\alpha$ and $d\alpha = \frac{1}{iu}\,du$. Substituting, performing long division, and then decomposing into partial fractions,

\[ \begin{aligned}\frac12\int \frac{u^2 - 1}{u(2u + 1)} \, du&=\frac14\int 1\,du - \frac14\int \frac{u+2}{u(2u+1)}\,du\\&=\frac14\int1\,du -\frac12\int\frac{1}{u}\,du+\frac38\int\frac{1}{2u+1}\,du\\&=\frac{u}{4}-\frac{\ln{u}}{2}+\frac38\ln{|2u+1|}+C\\&=\frac{u}{4}+\frac12\ln{\left|\frac{(2u+1)^{\frac34}}{u}\right|}+C\\&=\frac{e^{i\alpha}}{4}+\frac12\ln{\left|\frac{(2e^{i\alpha}+1)^{\frac34}}{e^{i\alpha}}\right|}+C\\&=\frac{x-\sqrt{x^2-1}}{4}+\frac12\ln{\left|\frac{(2(x-\sqrt{x^2-1})+1)^{\frac34}}{x-\sqrt{x^2-1}}\right|}+C\end{aligned} \]

The following example has been taken from the popular YouTube channel, Blackpenredpen

Example 4. Evaluate

$$\int\sqrt{\frac{1-x}{1+x}}\,dx$$

Solution. For $x\in[0, 1]$, applying identity $(10)$, we have

$$\begin{aligned}\int\sqrt{\frac{1-x}{1+x}}\,dx&=i\int\sqrt{\frac{x-1}{x+1}}\,dx\\&=-i\int\frac{1-e^{-i\alpha}}{1+e^{-i\alpha}}\sin(\alpha)\,d\alpha\\&=\frac12\int\frac{(e^{-i\alpha}-1)(e^{-i\alpha}-e^{i\alpha})}{1+e^{-i\alpha}}\,d\alpha\\&=\frac12\int((e^{-i\alpha}+e^{i\alpha})-2)\,d\alpha\\&=\frac12\int2(\cos(\alpha)-1)\,d\alpha\\&=\sin(\alpha)-\alpha+C\\&=\sqrt{1-x^2}-\cos^{-1}(x)+C\end{aligned}$$

You can arrive at this same expression by using the trigonometric substitution $x = \cos(t)$, as some commented on the channel.

An alternative method to trig./hyp./Euler substitutions
Perhaps the reader will have noticed that the technique described above serves as an alternative method to trigonometric substitution. In fact, if we adapt equations $(1)$ and $(9)$, we will have the following more general expressions:

$$e^{i\cos^{-1}\left(\frac{x}{a}\right)}=\tan\left(\frac{1}{2}\csc^{-1}\left(\frac{x}{a}\right)\right)=\frac{1}{a}(x-\sqrt{x^2-a^2})\tag{13}$$$$\frac{1-e^{i\cos^{-1}\left(\frac{x}{a}\right)}}{1+e^{i\cos^{-1}\left(\frac{x}{a}\right)}}=\tan\left(\frac{1}{2}\sec^{-1}\left(\frac{x}{a}\right)\right)=\frac{\sqrt{x-a}}{\sqrt{x+a}}\tag{14}$$

The general transformation formula is:

\[\boxed{\int f\left(x,\tan{\frac{\beta}{2}}, \tan{\frac{\gamma}{2}} \right)\,dx=\int f\left(\frac{e^{i\alpha}+e^{-i\alpha}}{2}a, e^{\pm\text{i}\alpha}, \frac{1-e^{\pm\text{i}\alpha}}{1+e^{\pm\text{i}\alpha}}\right)\,\frac{e^{-\text{i}\alpha}-e^{\text{i}\alpha}}{2i}a\,d\alpha}\tag{15}\]

Where $\alpha=\cos^{-1}\left(\frac{x}{a}\right)$, $\beta=\csc^{-1}\left(\frac{x}{a}\right)$ and $\gamma=\sec^{-1}\left(\frac{x}{a}\right).$

Also, you can use

$$\boxed{\int f\left(x, \sqrt{x^2-a^2}, \frac{\sqrt{x-a}}{\sqrt{x+a}}\right)\,dx= \int f\left(\frac{e^{i\alpha}+e^{-i\alpha}}{2}a, \frac{e^{\mp\text{i}\alpha}-e^{\pm\text{i}\alpha}}{2}a, \frac{1-e^{\pm\text{i}\alpha}}{1+e^{\pm\text{i}\alpha}}\right)\,\frac{e^{-\text{i}\alpha}-e^{\text{i}\alpha}}{2i}a\,d\alpha}\tag{16}$$

For the alternating signs $\mp$, use the upper sign when $\frac{x}{a} \geq 1$, and the lower sign when $0 \leq \frac{x}{a} \leq 1$.

The following example is a typical case where you would apply trigonometric substitution, specifically Case I, and it has been taken from the Wikipedia page dedicated to this technique.

Example 5. Evaluate

$$\int_{-1}^{1}\sqrt{4-x^2}\,dx$$

Solution. Rewriting and applying transformation $(16)$, we have:

$$\begin{aligned}\int_{-1}^{1}\sqrt{4-x^2}\,dx&=i\int_{-1}^{1}\sqrt{x^2-4}\,dx\\&=\int_{-1}^{1}(e^{-i\alpha}-e^{i\alpha})^2\,dx\qquad (\text{Applying transformation $(16)$.})\\&=\int_{\frac{2\pi}{3}}^{\frac{\pi}{3}} \left(e^{-2i\alpha} + e^{2i\alpha} - 2\right) d\alpha\\&= \frac{1}{2}i e^{-2i\alpha} - \frac{1}{2}i e^{2i\alpha}-2\alpha\bigg|_\frac{2\pi}{3}^\frac{\pi}{3}\\&=\sin{(2\alpha)}-2\alpha\bigg|_\frac{2\pi}{3}^\frac{\pi}{3}\\&=\left( \sin \left( \frac{2\pi}{3} \right) - \frac{2\pi}{3} \right) - \left( \sin \left( \frac{4\pi}{3} \right) - \frac{4\pi}{3} \right)\\&=\sqrt{3} + \frac{2\pi}{3} \end{aligned}$$

This result coincides with the one obtained in the Wikipedia article. The case III can also be tackled with this method. For case II, we will make use of the following identity, valid for $x \in [0, \infty)$ and $a>0$:

$$e^{\sinh^{-1}{(\frac{x}{a})}}=\coth{\left(\frac12\text{csch}^{-1}{\left(\frac{x}{a}\right)}\right)}=\frac{1}{a}\left(\sqrt{x^2+a^2}+x\right)\tag{17}$$

Example 6. Evaluate

$$\int \sqrt{x^2+1}\,dx\tag{18}$$

Solution. From $(17)$ follows that

$$\int\sqrt{x^2+1}\,dx=\int e^{\sinh^{-1}{(x)}}\,dx-\int x\,dx$$

Now let $u=\sinh^{-1}(x)\implies dx=\sqrt{x^2+1}\,du$, and $\sinh^2{(u)}=x^2$. Then

$$\begin{aligned}\int e^{\sinh^{-1}{(x)}}\,dx&=\int e^{u}\sqrt{\sinh^2(u)+1}\,du\\&=\int e^{u}\cosh(u)\,du\\&=\frac12\int e^{u}\left(e^{-u}+e^{u}\right)\,du\\&=\frac12\int \left(1+e^{2u}\right)\,du\\&=\frac{u}{2}+\frac{e^{2u}}{4}+C\\&=\frac{\sinh^{-1}(x)}{2}+\frac{e^{2\sinh^{-1}(x)}}{4}+C \end{aligned}$$

Collecting back the terms, 

$$\int\sqrt{x^2+1}\,dx=\int e^{\sinh^{-1}{(x)}}\,dx-\int x\,dx=\frac{2\sinh^{-1}(x)+e^{2\sinh^{-1}(x)}-2x^2}{4}+C$$

Compare this solution with the one provided in the Blackpenredpen and Integrals for you channels. The closed forms can be proven equivalent to the one given here easily; however, the solution given here seems much simpler to me.

The general transformation formula is:

$$\boxed{\int f\left(x, \sqrt{x^2+a^2}\right)\, dx = \int f\left(\frac{e^{\theta}-e^{-\theta}}{2}a, \frac{e^{\theta}+e^{-\theta}}{2}a\right) \frac{e^{\theta}+e^{-\theta}}{2}a\, d\theta}\tag{19}$$

Where $\theta=\sinh^{-1}(\frac{x}{a})$.

Applying $(19)$, the evaluation of integral $(18)$ is even more straightforward. The following example will make it clearer how effective $(19)$ can be.

Example 7 (2006 MIT Integration Bee). Evaluate

$$\int_{0}^{\infty} \frac{1}{\left(x+\sqrt{1+x^2}\right)^2}\,dx$$

Solution. Applying transformation $(19)$, the integral becomes

$$\begin{aligned}\int \frac{1}{\left(x+\sqrt{1+x^2}\right)^2}\,dx&=\frac12\int \frac{e^{\theta}+e^{-\theta}}{e^{2\theta}}\,d\theta\\&=\frac12\left[\int e^{-\theta}\,d\theta+\int e^{-3\theta}\,d\theta\right]\\&=\frac12\left[- e^{-\theta} - \frac{e^{-3\theta}}{3}+C\right]\\&=-\frac{1}{2\left(x + \sqrt{x^2 + 1}\right)} - \frac{1}{6\left(x + \sqrt{x^2 + 1}\right)^3}+C\qquad \left(\text{It follows from $(17)$.}\right)\\&=-\frac{{6x(\sqrt{x^2 + 1} + x) + 4}}{{6(\sqrt{x^2 + 1} + x)^3}}+C \end{aligned}$$

Now, applying the integration limits,

$$\int_{0}^{\infty} \frac{1}{\left(x+\sqrt{1+x^2}\right)^2}\,dx=-\frac{{6x(\sqrt{x^2 + 1} + x) + 4}}{{6(\sqrt{x^2 + 1} + x)^3}}\bigg|_0^\infty=\frac{2}{3}$$

In this YouTube link, you can see how both competitors fail to evaluate this integral. The solution provided in this blog also appears less tedious than the one given by the Let Solve Math Problems channel, using Euler substitution rather than the traditional trigonometric substitution.

A still more general version of $(19)$ is as follows:

$$\boxed{\int f\left(x, \sqrt{(x+b)^2+a^2}\right)\, dx = \int f\left(\frac{e^{\theta}-e^{-\theta}}{2}a-b, \frac{e^{\theta}+e^{-\theta}}{2}a\right) \frac{e^{\theta}+e^{-\theta}}{2}a\, d\theta}\tag{20}$$

Where $\theta=\sinh^{-1}(\frac{x+b}{a})$ and $a$ and $b$ are real numbers with $a>0$.

The following example also comes from a question at MathSE asked by user @user84413, where they complain that using the traditional substitutions $y=\sin(\beta)$ or $y=\tanh(\gamma)$ requires them to make a second substitution and then apply partial fraction decomposition. Example 8 illustrates how the technique presented in this blog turns out to be more effective by not requiring partial fraction decomposition.

Example 8. Evaluate

$$\int_0^1\frac{\sqrt{1-y^2}}{1+y^2}\,dy$$

SolutionBy applying the following transformation formula

$$\int f\left(y, \sqrt{y^2-a^2}, \frac{\sqrt{y-a}}{\sqrt{y+a}}\right)\,dy= \int f\left(\frac{e^{-i\alpha}+e^{i\alpha}}{2}a, \frac{e^{i\alpha}-e^{-i\alpha}}{2}a, \frac{1-e^{-i\alpha}}{1+e^{-i\alpha}}\right)\,\frac{e^{i\alpha}-e^{-i\alpha}}{2i}a\,d\alpha,$$

where $\alpha=\cos^{-1}(y)$, $y\in[0, 1]$ and $a>0$, the integral becomes

$$\begin{aligned}\int \frac{\sqrt{1-y^2}}{1+y^2}\,dy &= \int \frac{{(e^{i \alpha} - e^{-i \alpha})^2}}{{(e^{i \alpha} - e^{-i \alpha})^2 + 8}}\, d\alpha \\&= \int \frac{\sin^2(\alpha)}{\sin^2(\alpha) - 2}\, d\alpha \\&= 2\int \frac{1}{\sin^2(\alpha) - 2}\,d\alpha + \int 1\,d\alpha\\&=\int1\,d\alpha-2\int \frac{\sec^2(\alpha)}{\tan^2(\alpha)+2}\,d\alpha\qquad \left(\text{Since $\sin(\alpha)=\frac{\tan(\alpha)}{\sec(\alpha)}$.}\right)\\&=\alpha-\sqrt{2}\tan^{-1}\left(\frac{\tan(\alpha)}{\sqrt{2}}\right)+C.\qquad \left(\text{Since $\int \frac{dx}{x^2+a^2}=\frac1a\tan^{-1}\left(\frac{x}{a}\right) + C$.}\right) \end{aligned}$$

For the integration limits, we have that $\cos^{-1}(0)=\frac{\pi}{2}$ and $\cos^{-1}(1)=0$. Reversing the interval limits with a negative sign, we have

$$\begin{aligned}\int_{0}^{1} \frac{\sqrt{1-y^2}}{1+y^2}\,dy &= -\int_{0}^{\frac{\pi}{2}} \frac{\sin^2(\alpha)}{\sin^2(\alpha) - 2}\, d\alpha \\&= \sqrt{2} \tan^{-1}\left(\frac{\tan(\alpha)}{\sqrt{2}}\right) - \alpha\bigg|_{0}^{\frac{\pi}{2}}\\&=\lim_{{\alpha \to \frac{\pi}{2}^{-}}} \left( \sqrt{2} \tan^{-1}\left(\frac{\tan(\alpha)}{\sqrt{2}}\right) - \alpha \right)-0\\&=\frac{1}{2} (\sqrt{2}-1) \pi\end{aligned}$$

Alternatively, we have the option of converting the integral 

$$\int \frac{{(e^{i \alpha} - e^{-i \alpha})^2}}{{(e^{i \alpha} - e^{-i \alpha})^2 + 8}}\, d\alpha$$

into an integral of a rational function and then applying partial fraction decomposition. However, this method, although more mechanical, would not be as simple as the solution we give above.

Example 9. Evaluate 

$$\int x^2\sqrt{x^2-1}\,dx$$

SolutionAfter applying $(16)$ the integral becomes

$$\begin{aligned}\int x^2\sqrt{x^2-1}\,dx&=-\frac{i}{16}\int \left( e^{i\alpha} + e^{-i\alpha} \right)^2 \left( e^{-i\alpha} - e^{i\alpha} \right)^2 \, d\alpha\\&=-\frac{i}{16}\int \left(e^{-4 i \alpha} + e^{4 i \alpha} - 2 \right)\,d\alpha\\&=\frac{1}{64}e^{-4i\alpha} - \frac{1}{64} e^{4i\alpha} +\frac{i\alpha}{8} + C\\&=\frac{i}{32}(4\alpha - \sin(4\alpha)) + C\\&= \frac{i}{32}(4\cos^{-1}(x) - \sin(4\cos^{-1}(x))) + C\\&=\frac{1}{8}\left(\ln|x-\sqrt{x^2-1}| +x \left(2x^2-1\right) \sqrt{x^2-1}\right) + C  \end{aligned}$$

Example 9 is a question by Chomowicz. I cordially invite the reader to compare the solution given in this blog with the solutions on MathSE.

Example 10 (From MathSE). Evaluate

$$\int \ln{\left(x+\sqrt{x^2-1}\right)}\,dx$$

Solution. Applying $(16)$ the integral becomes

$$\begin{aligned}\int\ln\left(x+\sqrt{x^2-1}\right)\,dx&=i\int \alpha\sin{\alpha}\,d\alpha\\&\overset{ibp}{=}i\left(-\alpha\cos{\alpha}+\int \cos{\alpha}\,d\alpha\right)\\&=i\left(\sin{\alpha}-\alpha\cos{\alpha}\right)+C\\&=i\left(\sin{\left(\cos^{-1}(x)\right)}-x\cos^{-1}(x)\right)+C\\&=i\sqrt{1-x^2}-x\color{red}{i\cos^{-1}(x)}+C\\&=-\sqrt{x^2-1}-x\color{red}{\ln{\left(x-\sqrt{x^2-1}\right)}}+C\\&=x\ln{\left(x+\sqrt{x^2-1}\right)}-\sqrt{x^2-1}+C \end{aligned}$$

Note: $\color{red}{i\cos^{-1}(x)=\ln{\left(x-\sqrt{x^2-1}\right)}}$ follows from identity $(1)$.

Integrals of the form $\int f\left(x,\frac{\sqrt{x+p}}{\sqrt{x+q}}\right)\,dx$

Let $b-a=p$ and $b+a=q$, where $a$ and $b$ are real numbers. Then the following identities hold:

$$\frac{1-e^{\pm\text{i}\alpha}}{1+e^{\pm\text{i}\alpha}}=\tan{\left(\frac12\sec^{-1}\left(\frac{x+b}{a}\right)\right)}=\frac{\sqrt{x+b-a}}{\sqrt{x+b+a}}=\frac{\sqrt{x+p}}{\sqrt{x+q}},\tag{21}$$

$$e^{\pm\text{i}\alpha}=\tan\left(\frac{1}{2} \csc^{-1}\left(\frac{x+b}{a}\right)\right) = \frac{x + b \mp \sqrt{(x + b)^2 - a^2}}{a}\tag{22}$$

These identities are generalizations of identities $(1-2)$ and $(9-10)$ and can be proven similarly. The general identities $(21)$ and $(22)$ lead us to the following general transformation formula: 

$$\boxed{\int f\left(x,\tan{\frac{\beta}{2}}, \tan{\frac{\gamma}{2}} \right)\,dx=\int f\left(\frac{e^{i\alpha}+e^{-i\alpha}}{2}a-b, e^{\pm\text{i}\alpha}, \frac{1-e^{\pm\text{i}\alpha}}{1+e^{\pm\text{i}\alpha}}\right)\,\frac{e^{-\text{i}\alpha}-e^{\text{i}\alpha}}{2i}a\,d\alpha}\tag{23}$$

Or

$$\boxed{\int f\left(x, \sqrt{(x+b)^2-a^2}, \frac{\sqrt{x+b-a}}{\sqrt{x+b+a}}\right)\,dx= \int f\left(\frac{e^{i\alpha}+e^{-i\alpha}}{2}a-b, \frac{e^{\mp\text{i}\alpha}-e^{\pm\text{i}\alpha}}{2}a, \frac{1-e^{\pm\text{i}\alpha}}{1+e^{\pm\text{i}\alpha}}\right)\,\frac{e^{-\text{i}\alpha}-e^{\text{i}\alpha}}{2i}a\,d\alpha}\tag{24}$$

Where $\alpha=\cos^{-1}\left(\frac{x+b}{a}\right)$, $\beta=\csc^{-1}\left(\frac{x+b}{a}\right)$ and $\gamma=\sec^{-1}\left(\frac{x+b}{a}\right).$ Use the upper sign for the alternating signs $\mp$ when $\frac{x + b}{a} \geq 1$ and the lower sign when $0 \leq \frac{x + b}{a} \leq 1$.

To illustrate its usefulness, let's look at the following example taken from the YouTube channel Prime Newtons.

Example 11. Evaluate 

$$\int \frac{\sqrt{x+1}}{\sqrt{x+2}}\,dx$$

Solution. First, we obtain the values of $a$ and $b$ by solving the following (simple!) system of equations:

$$\left. b-a=1\atop a+b=2\right\}$$

The solutions are $a = \frac{1}{2}$ and $b = \frac{3}{2}$. Applying formula $(23)$ for $x\geq-1$, the integral becomes

$$\begin{aligned}\int \frac{\sqrt{x+1}}{\sqrt{x+2}}\,dx&= -\frac{i}{4}\int \frac{(1 - e^{i\alpha}) (e^{-i\alpha} - e^{i\alpha})}{(e^{i \alpha} + 1)} \, d\alpha\\&=-\frac{i}{4}\int \frac{e^{-i\alpha} (e^{i\alpha} - 1) (e^{2i\alpha} - 1)}{e^{i\alpha} + 1} \, dx\\&=-\frac{i}{4}\int e^{-i\alpha}(e^{i\alpha}-1)^2\,d\alpha\\&=-\frac{i}{4}\int (e^{-i\alpha}+e^{i\alpha}-2)\,d\alpha\\&=\frac14(2i\alpha+e^{-i\alpha}-e^{i\alpha})+C\end{aligned}$$

To switch to real numbers, plug in the values of $a$ and $b$ into $(22)$ and simplify. Then, replace the expression in the antiderivative from $(22)$ and simplify again. Thus, we obtain

$$=\sqrt{x^2+3x+2} + \frac{1}{2} \ln\left|2x - 2\sqrt{x^2+3x+2} + 3\right|+C$$

On the Prime Newtons YouTube channel, they first perform a variable change, followed by a trigonometric substitution, reducing the integral to integrals involving the secant and secant cubed. This integral calculator uses $u^2 = \frac{x+1}{x+2}$ and then (a complicated) partial fraction decomposition. This can be even more complicated for integral like this one:


where as our method only requires a few lines of algebra and basic calculus, as in Example 11.  

More generally, any integral of the form
$$\int \sqrt{\frac{\sqrt[n]{x} + p}{\sqrt[n]{x} + q}} \, dx,$$
where $n \in \mathbb{N}$, can be solved similarly as example 11, since after $u=x^{\frac{1}{n}}$ follows

$$\int \sqrt{\frac{u + p}{u + q}} \cdot n u^{n-1} \, du = n \int u^{n-1} \sqrt{\frac{u + p}{u + q}} \, du$$

Using the real and imaginary part of Euler's formula

Example 12. Evaluate

$$\int xe^{\cos^{-1}(x)}\,dx$$

Solution. Transforming the integral according to formula $(23)$ and using the real part of Euler's formula, we have

$$\begin{aligned}\int xe^{\cos^{-1}(x)}\,dx&=\text{Re}\left[-\frac{i}{2}\int e^{i\alpha}e^{\alpha}\left(e^{-i\alpha}-e^{i\alpha}\right)\,d\alpha\right]\\&=\text{Re}\left[-\frac{i}{2}\int \left(e^{\alpha}-e^{(1+2i)\alpha}\right)\,d\alpha\right]\\&=\text{Re}\left[-\frac{i}{2}\left(e^{\alpha}-\frac{e^{(1+2i)\alpha}}{1+2i}\right)+C\right]\\&=\frac{1}{10} e^{\alpha} \left( 2 \cos(2\alpha) - \sin(2\alpha) \right)+C\\&=\frac{1}{10} e^{\cos^{-1}(x)} \left( 2 \cos(2\cos^{-1}(x)) - \sin(2\cos^{-1}(x)) \right)+C\\&=-\frac{e^{\cos^{-1}(x)}}{5} \left(x \sqrt{1 - x^2} - 2x^2 + 1 \right)+C \end{aligned}$$

Disguised exponential substitution

Example 13. Evaluate
$$\int \sqrt{\sqrt{x-1}-\sqrt{x-2}} \, dx$$
The integral can be rewritten this way
$$\begin{aligned}\int \sqrt{\underbrace{\sqrt{x-1}-\sqrt{(\sqrt{x-1})^2-1}}_{e^{i\alpha}=f(x)-\sqrt{f(x)^2-1}}} \, dx \end{aligned}.$$
This suggest an exponential substitution since after
$$\cos{\alpha}=\sqrt{x-1},\qquad dx=-2\cos{\alpha}\sin{\alpha}\,d\alpha=-\sin{2\alpha}\,d\alpha=\frac{e^{-2i\alpha}-e^{2i\alpha}}{2i}\,d\alpha,$$
the integral becomes
$$\begin{aligned}\int \sqrt{\sqrt{x-1}-\sqrt{x-2}} \, dx&=-\frac{i}{2}\int e^{\frac12i\alpha}(e^{-2i\alpha}-e^{2i\alpha})\,d\alpha\\&=-\frac{i}{2}\int (e^{-\frac32i\alpha}-e^{\frac52i\alpha})\,d\alpha\\&=\frac{1}{3} e^{-\frac{3 i \alpha}{2}} + \frac{1}{5} e^{\frac{5 i \alpha}{2}} + C\\&=\frac13(\sqrt{x-1}+\sqrt{x-2})^{\frac32}+\frac15(\sqrt{x-1}-\sqrt{x-2})^{\frac52}+C \end{aligned}.$$

Example 14. Evaluate
$$\int \frac{1}{\sqrt{x}+\sqrt{x-1}+1} \, dx$$
The integral can be rewritten this way
$$\begin{aligned}\int \frac{1}{\underbrace{\sqrt{x}+\sqrt{(\sqrt{x})^2-1}}_{e^{-i\alpha}=f(x)+\sqrt{f(x)^2-1}} +1} \, dx \end{aligned}.$$
This suggest an exponential substitution since after
$$x=\cos^2{\alpha},\qquad dx=-2\cos{\alpha}\sin{\alpha}\,d\alpha=-\sin{2\alpha}\,d\alpha=\frac{e^{-2i\alpha}-e^{2i\alpha}}{2i}\,d\alpha,$$
the integral becomes
$$\begin{aligned}\int \frac{1}{\sqrt{x}+\sqrt{x-1}+1} \, dx&=-\frac{i}{2}\int\frac{e^{-2i\alpha}-e^{2i\alpha}}{e^{-i\alpha}+1}\,d\alpha\\&=-\frac{i}{2}\int\frac{e^{-i\alpha}-e^{3i\alpha}}{e^{i\alpha}+1}\,d\alpha\\&=\frac{i}{2}\int\frac{e^{-i\alpha}(e^{4i\alpha}-1)}{e^{i\alpha}+1}\,d\alpha\\&=\frac{i}{2}\int\frac{e^{-i\alpha}(e^{2i\alpha}+1)(e^{i\alpha}-1)(e^{i\alpha}+1)}{e^{i\alpha}+1}\,d\alpha\\&=\frac{i}{2}\int (e^{2i\alpha}-e^{i\alpha}-e^{-i\alpha}+1)\,d\alpha\\&=\frac12\left(\frac12e^{2i\alpha}+e^{-i\alpha}-e^{i\alpha}+i\alpha\right) + C\\&=\frac{1}{4}\left(2\ln\left|\sqrt{x} - \sqrt{x - 1}\right| - 2\sqrt{x - 1}\left(\sqrt{x} - 2\right) + 2x - 1 \right) + C \end{aligned}$$

Extended Weierstrass substitution

From $(22)$, by introducing the substitution $$t=e^{\pm\text{i}\alpha}=\tan\left(\frac{1}{2} \csc^{-1}\left(\frac{x+b}{a}\right)\right) = \frac{x + b \mp \sqrt{(x + b)^2 - a^2}}{a},$$ we can reformulate the transformation formula $(24)$ so that [extended] Weierstrass substitution can be applied directly to integrals with irrational integrands. This approach is neater than employing complex exponentials. However, on the interval $[-1, 1]$, using complex exponentials may be more convenient, since the tangent function becomes undefined at $\frac{x+b}{a}=0$.

With this substitution, we have:

$$\int f\left( x, \sqrt{(x + b)^2 - a^2}, \dfrac{ \sqrt{x + b - a} }{ \sqrt{x + b + a} } \right) \, dx= \int f\left(\frac{t^2+1}{2t}a - b, \mp\frac{t^2-1}{2t}a, \pm\frac{1-t}{1+t}\right) \frac{t^2-1}{2 t^2}a\, dt.\tag{25}$$

For the alternating signs $\mp$ and $\pm$:
    - Use the upper sign when $\dfrac{x + b}{a} \geq 1$
    - Use the lower sign when $\dfrac{x + b}{a} \leq -1$

Similarly, transformation formula $(20)$ can be rewritten as follows

$$\int f\left( x, \sqrt{(x + b)^2 + a^2}\right) \, dx= \int f\left(\frac{s^2-1}{2s}a - b, \frac{s^2+1}{2s}a\right) \frac{s^2+1}{2 s^2}a\, ds,\tag{26}$$

where $s=\coth{\left(\frac12\text{csch}^{-1}\left(\frac{x+b}{a}\right)\right)}=\frac{x+b+\sqrt{(x+b)^2+a^2}}{a}$, for $\frac{x+b}{a}>0$ and $a>0$.

Summary
Here are the most general three transformation formulas presented together:

Transformation for Integrals Involving $\tan\left( \dfrac{\beta}{2} \right)$ and $\tan\left( \dfrac{\gamma}{2} \right)$:

$$\begin{aligned}\int f\biggl(x, \tan\left(\frac{\beta}{2}\right), \tan\left(\frac{\gamma}{2}\right)\biggr)\,dx&= \int f\left(\overbrace{\frac{e^{i\alpha} + e^{-i\alpha}}{2}}^{\cos \alpha} a - b,\; \overbrace{e^{\pm i\alpha}}^{\cos \alpha \pm i \sin \alpha},\; \overbrace{\frac{1 - e^{\pm i\alpha}}{1 + e^{\pm i\alpha}}}^{i \tan\left(\frac{\mp \alpha}{2}\right)}\right)\overbrace{\frac{e^{-i\alpha} - e^{i\alpha}}{2i}}^{-\sin \alpha} a \, d\alpha \\[6pt]&\stackrel{t=e^{\pm i\alpha}}{=} \int f\left(\frac{t^2+1}{2t}a - b,\; t,\; \pm\frac{1-t}{1+t}\right)\frac{t^2-1}{2t^2}a\, dt.\end{aligned}$$

- Where:
  - $a>0$
  - $\alpha = \cos^{-1}\left( \dfrac{x + b}{a} \right)$
  - $\beta = \csc^{-1}\left( \dfrac{x + b}{a} \right)$
  - $\gamma = \sec^{-1}\left( \dfrac{x + b}{a} \right)$
- For the alternating signs $\pm$:
    - Use the upper sign when $\dfrac{x + b}{a} \geq 1$
    - Use the lower sign when $\dfrac{x + b}{a} \leq -1$
    - Use the lower sign when $0 \leq \dfrac{x + b}{a} \leq 1$ (valid in the complex plane)

Transformation for Integrals Involving $\sqrt{(x + b)^2 - a^2}$ and $\dfrac{\sqrt{x + b - a}}{\sqrt{x + b + a}}$:

$$\begin{aligned}\int f\Bigl( x, \sqrt{(x + b)^2 - a^2}, \frac{\sqrt{x + b - a}}{\sqrt{x + b + a}} \Bigr)\, dx&= \int f\Biggl(\overbrace{\frac{e^{i\alpha} + e^{-i\alpha}}{2}}^{\cos \alpha}a - b,\ \overbrace{\frac{e^{\mp i\alpha} - e^{\pm i\alpha}}{2}}^{\mp i \sin \alpha}a,\ \overbrace{\frac{1 - e^{\pm i\alpha}}{1 + e^{\pm i\alpha}}}^{i \tan\left(\frac{\mp \alpha}{2}\right)}\Biggr)
\overbrace{\frac{e^{-i\alpha} - e^{i\alpha}}{2i}}^{-\sin \alpha} a \, d\alpha \\[6pt]&\overset{t = e^{\pm i\alpha}}{=} \int f\Biggl(\frac{t^2 + 1}{2t}a - b,\ \mp \frac{t^2 - 1}{2t}a,\ \pm \frac{1-t}{1+t}\Biggr)\frac{t^2 - 1}{2t^2}a \, dt.\end{aligned}$$

- Where:
  - $a>0$
  - $\alpha = \cos^{-1}\left( \dfrac{x + b}{a} \right)$
  - For the alternating signs $\mp$ and $\pm$:
    - Use the upper sign when $\dfrac{x + b}{a} \geq 1$
    - Use the lower sign when $\dfrac{x + b}{a} \leq -1$
    - Use the lower sign when $0 \leq \dfrac{x + b}{a} \leq 1$ (valid in the complex plane)


Transformation for Integrals Involving $\sqrt{(x + b)^2 + a^2}$:

$$\begin{aligned}\int f\left( x, \sqrt{(x + b)^2 + a^2} \right)\, dx
&= \int f\Biggl(\overbrace{\frac{e^\theta - e^{-\theta}}{2}}^{\sinh \theta} a - b,\ \overbrace{\frac{e^\theta + e^{-\theta}}{2}}^{\cosh \theta} a\Biggr)\overbrace{\frac{e^\theta + e^{-\theta}}{2}}^{\cosh \theta} a\, d\theta \\[6pt]&\overset{s=e^\theta}{=} \int f\Biggl(\frac{s^2 - 1}{2s}a - b,\ \frac{s^2 + 1}{2s}a\Biggr)\frac{s^2 + 1}{2 s^2}a\, ds.\end{aligned}$$

- Where:
  - $\theta = \sinh^{-1}\left( \dfrac{x + b}{a} \right)$
  - $a > 0$

Regarding the originality of this technique, I've asked on Mathoverflow under the title 'Solving 'impossible' integrals with a new (?) trick.' Take a look for yourself.

miércoles, 28 de febrero de 2024

A family of trigonometric formulas for the roots of quadratic equations

 This note presents alternative trigonometric formulas for finding the roots of quadratic equations where $a$, $b$, and $c$ are non-zero real numbers.

Before the era of calculators, trigonometric formulas were favored for computing quadratic roots due to their time and labor-saving benefits. However, it's not advisable nowadays to rely on these formulas over the traditional quadratic formula for root calculations. Nonetheless, the trigonometric formulas showcased in this note have hinted at certain identities that appear useful for integrating irrational functions. Thus, the sole purpose of this note is to document the origins of these identities.

Theorem 1. Let $a$, $b$, and $c$ be non-zero real numbers. For the quadratic equation $ax^2+bx+c=0$, the roots are given by:

$$x_{1}=  ie^{i\alpha}\sqrt{\frac{c}{a}}\qquad \text{and}\qquad  x_2=-ie^{-i\alpha}\sqrt{\frac{c}{a}},\tag{1}$$

where $\alpha=\sin^{-1}{\left(\frac{b}{2\sqrt{ac}}\right)}$.

Proof. Consider the quadratic equation $a^2+bx+c=0$. Multiplying both sides by $a$ and making the substitutions $ax=p$ and $ac=q^2$ yields

$$p^2+bp+q^2=0.$$

Let's make the substitution $\sin{\alpha} = \frac{b}{2q}$. Consequently,

$$\begin{aligned}0&=p^2+bp+q^2\\&=p^2+2qp\sin{\alpha}+q^2\\&=p^2\left(\sin^2{\frac{\alpha}{2}}+\cos^2{\frac{\alpha}{2}}\right)+4qp\sin{\frac{\alpha}{2}}\cos{\frac{\alpha}{2}}+q^2\left(\sin^2{\frac{\alpha}{2}}+\cos^2{\frac{\alpha}{2}}\right)\\&=\left(p\sin{\frac{\alpha}{2}}+q\cos{\frac{\alpha}{2}}\right)^2 + \left(p\cos{\frac{\alpha}{2}}+q\sin{\frac{\alpha}{2}}\right)^2\\&=\left(p\sin{\frac{\alpha}{2}}+q\cos{\frac{\alpha}{2}}\right)^2  -i^2\left(p\cos{\frac{\alpha}{2}}+q\sin{\frac{\alpha}{2}}\right)^2 .\end{aligned}$$

Factorizing the difference of squares and then factorizing again, one of the factor of the quadratic equation can be express as follows

$$p\left(\sin{\frac{\alpha}{2}}+i\cos{\frac{\alpha}{2}}\right)+q\left(\cos{\frac{\alpha}{2}}+i\sin{\frac{\alpha}{2}}\right).$$

Setting the factor equal to zero, undoing the substitutions $ax=p$ and $ac=q^2$ and solving for $x$, we obtain 

$$\begin{aligned}x_1&=-\left(\frac{\cos{\frac{\alpha}{2}}+i\sin{\frac{\alpha}{2}}}{\sin{\frac{\alpha}{2}}+i\cos{\frac{\alpha}{2}}}\right)\sqrt{\frac{c}{a}}\\&= -(\sin{\alpha}-i\cos{\alpha})\sqrt{\frac{c}{a}}\\&=ie^{i\alpha}\sqrt{\frac{c}{a}}. \end{aligned}$$

The other factor is given by

$$p\left(\sin{\frac{\alpha}{2}}-i\cos{\frac{\alpha}{2}}\right)+q\left(\cos{\frac{\alpha}{2}}-i\sin{\frac{\alpha}{2}}\right).$$

And similarly,

$$x_2=-ie^{-i\alpha}\sqrt{\frac{c}{a}}.$$ 

Theorem 2. For the quadratic equation $ax^2+bx+c=0$ with non-zero real numbers $a$, $b$, and $c$, the roots are given by:

$$x_{1}=-\tan{\frac{\beta}{2}}\sqrt{\frac{c}{a}}\qquad \text{and} \qquad x_{2}=-\cot{\frac{\beta}{2}}\sqrt{\frac{c}{a}},\tag{2}$$

where $\beta=\csc^{-1}{\left(\frac{b}{2\sqrt{ac}}\right)}$.

Proof. Multiplying by $a$ the quadratic equation $ax^2+bx+c=0$ and then substituting $ax=p$ and $ac=q^2$, we have

$$p^2+bp+q^2=0.$$

Use the substitution $\csc{\beta}=\frac{b}{2q}$, then

$$\begin{aligned}0&=p^2+bp+q^2\\&=p^2+2qp\csc{\beta}+q^2\\&=\csc{\beta}\left(p^2\sin{\beta}+2qp+q^2\sin{\beta}\right)\\&=2p^2\sin{\frac{\beta}{2}}\cos{\frac{\beta}{2}}+2qp\left(\sin^2{\frac{\beta}{2}}+\cos^2{\frac{\beta}{2}}\right)+2q^2\sin{\frac{\beta}{2}}\cos{\frac{\beta}{2}}\\&=p^2\sin{\frac{\beta}{2}}\cos{\frac{\beta}{2}}+qp\sin^2{\frac{\beta}{2}}+ qp\cos^2{\frac{\beta}{2}}+q^2\sin{\frac{\beta}{2}}\cos{\frac{\beta}{2}}\\&= p\sin{\frac{\beta}{2}}\left(p\cos{\frac{\beta}{2}}+q\sin{\frac{\beta}{2}}\right)+q\cos{\frac{\beta}{2}}\left(p\cos{\frac{\beta}{2}}+q\sin{\frac{\beta}{2}}\right)\\&= \left(p\cos{\frac{\beta}{2}}+q\sin{\frac{\beta}{2}}\right)\left(p\sin{\frac{\beta}{2}}+q\cos{\frac{\beta}{2}}\right).\end{aligned}$$

By setting the factors equal to zero, undoing substitutions $ax=p$ and $ac=q^2$ and solving for $x$, we obtain the desired formulas in $(2)$.

Theorem 3. Let $a$, $b$ and $c$ be non-zero real numbers. If $ax^2+bx+c=0$, then the roots are given by:

$$x_{1}=  -e^{i\gamma}\sqrt{\frac{c}{a}}\qquad \text{and}\qquad  x_2=-e^{-i\gamma}\sqrt{\frac{c}{a}},\tag{3}$$

where $\gamma=\cos^{-1}{\left(\frac{b}{2\sqrt{ac}}\right)}$.

Proof. Consider the quadratic equation $ax^2+bx+c=0$. Multiplying both sides by $a$ and substituting $ax=p$ and $ac=q^2$ yields

$$p^2+bp+q^2=0.$$

By making the substitution $\cos{\gamma} = \frac{b}{2q}$, it follows that

$$\begin{aligned}0&=p^2+bp+q^2\\&=p^2+2qp\cos{\gamma}+q^2\\&=p^2\left(\sin^2{\frac{\gamma}{2}}+\cos^2{\frac{\gamma}{2}}\right)+4qp\left(\cos^2{\frac{\gamma}{2}}-\sin^2{\frac{\gamma}{2}}\right)+q^2\left(\sin^2{\frac{\gamma}{2}}+\cos^2{\frac{\gamma}{2}}\right)\\&=\sin^2{\frac{\gamma}{2}} (p-q)^2+\cos^2{\frac{\gamma}{2}}(p+q)^2\\&=\sin^2{\frac{\gamma}{2}} (p-q)^2-i^2\cos^2{\frac{\gamma}{2}}(p+q)^2.\end{aligned}$$

By factoring the difference of squares first and then applying further factorization, one of the factors of the quadratic equation can be represented as follows

$$p\left(\sin{\frac{\gamma}{2}}+i\cos{\frac{\gamma}{2}}\right)+q\left(-\sin{\frac{\gamma}{2}}+i\cos{\frac{\gamma}{2}}\right).$$

Setting the factors equal to zero, undoing substitutions $ax=p$ and $ac=q^2$ and solving for $x$, we obtain

$$\begin{aligned}x_1&=\left(\frac{\sin{\frac{\gamma}{2}}-i\cos{\frac{\gamma}{2}}}{\sin{\frac{\gamma}{2}}+i\cos{\frac{\gamma}{2}}}\right)\sqrt{\frac{c}{a}}\\&= -(\cos{\gamma}+i\sin{\gamma})\sqrt{\frac{c}{a}}\\&=-e^{i\gamma}\sqrt{\frac{c}{a}}.\end{aligned}$$

The other factor is given by

$$p\left(\sin{\frac{\gamma}{2}}-i\cos{\frac{\gamma}{2}}\right)-q\left(\sin{\frac{\gamma}{2}}+i\cos{\frac{\gamma}{2}}\right).$$

And similarly,

$$x_2=-e^{-i\gamma}\sqrt{\frac{c}{a}}.$$

Theorem 4. Let $a$, $b$ and $c$ be non-zero real numbers. If $ax^2+bx+c=0$, then the roots are given by: 

$$x_{1,2}=\frac{\tan{\frac{\delta}{2}\pm1}}{\tan{\frac{\delta}{2}\mp1}}\sqrt{\frac{c}{a}},\tag{4}$$

where $\delta=\sec^{-1}{\left(\frac{b}{2\sqrt{ac}}\right)}$.

Proof. Consider the quadratic equation $ax^2+bx+c=0$. Multiplying both sides by $a$ and substituting $ax=p$ and $ac=q^2$ yields

$$p^2+bp+q^2=0.$$

Use the substitution $\sec{\delta}=\frac{b}{2q}$, then

$$\begin{aligned}0&=p^2+bp+q^2\\&=p^2+2qp\sec{\delta}+q^2\\&=\sec{\delta}\left(p^2\cos{\delta}+2qp+q^2\cos{\delta}\right)\\&=\cos{\delta}(p^2+q^2)+2qp\\&= \cos{\delta}(p+q)^2-2qp\cos{\delta}+2qp\\&= \left(\cos^2{\frac{\delta}{2}}-\sin^2{\frac{\delta}{2}}\right)(p+q)^2-2qp\left(1-2\sin^2{\frac{\delta}{2}}\right)+2qp\\&=  \cos^2{\frac{\delta}{2}}(p+q)^2 -\sin^2{\frac{\delta}{2}}(p+q)^2 +4qp\sin^2{\frac{\delta}{2}}\\&=   \cos^2{\frac{\delta}{2}}(p+q)^2 -\sin^2{\frac{\delta}{2}}\left((p+q)^2 -4qp\right)\\&= \cos^2{\frac{\delta}{2}}(p+q)^2 -\sin^2{\frac{\delta}{2}}(p-q)^2\\&= \left(\cos{\frac{\delta}{2}}(p+q) +\sin{\frac{\delta}{2}}(p-q)\right) \left(\cos{\frac{\delta}{2}}(p+q) -\sin{\frac{\delta}{2}}(p-q)\right).\end{aligned}$$

Expanding and then factorizing again, one of the factors of the quadratic equation is given by

$$p\left(\cos{\frac{\delta}{2}}+\sin{\frac{\delta}{2}}\right)+q\left(\cos{\frac{\delta}{2}}-\sin{\frac{\delta}{2}}\right).$$ 

By setting the factors equal to zero, undoing substitutions $ax=p$ and $ac=q^2$ and solving for $x$, we obtain

$$\begin{aligned}x_1&=\frac{\sin{\frac{\delta}{2}}+\cos{\frac{\delta}{2}}}{\sin{\frac{\delta}{2}}-\cos{\frac{\delta}{2}}}\sqrt{\frac{c}{a}}\\&= \frac{\tan{\frac{\delta}{2}+1}}{\tan{\frac{\delta}{2}-1}}\sqrt{\frac{c}{a}}. \end{aligned}$$

The other factor is given by

$$p\left(\cos{\frac{\delta}{2}}-\sin{\frac{\delta}{2}}\right)+q\left(\cos{\frac{\delta}{2}}+\sin{\frac{\delta}{2}}\right).$$

Similarly, 

$$x_2=\frac{\tan{\frac{\delta}{2}-1}}{\tan{\frac{\delta}{2}+1}}\sqrt{\frac{c}{a}}.$$

Theorem 5. Let $a$, $b$ and $c$ be non-zero real numbers. If $ax^2+bx+c=0$, then the roots are given by:

$$x_{1,2}=\frac{i\pm e^{\eta}}{i\mp e^{\eta}}\sqrt{\frac{c}{a}},\tag{5}$$

where $\eta=\tanh^{-1}{\left(\frac{b}{2\sqrt{ac}}\right)}$.

Proof. Consider the quadratic equation $ax^2+bx+c=0$. Multiplying both sides by $a$ and substituting $ax=p$ and $ac=q^2$ yields

$$p^2+bp+q^2=0.$$

Use the substitution $\tanh{\eta}=\frac{b}{2q}$, then

$$\begin{aligned}0&=p^2+bp+q^2\\&=p^2+2qp\tanh{\eta}+q^2\\&=(e^{2\eta} + 1) p^2 + 2 (e^{2\eta} - 1) p q + (e^{2\eta} + 1) q^2\\&=e^{2\eta}(p + q)^2 + (p - q)^2\\&=e^{2\eta}(p + q)^2 - i^2(p - q)^2 \\&=(e^{\eta}p + i p + e^{\eta}q - i q)(e^{\eta}p - i p + e^{\eta}q + i q)\\&= \left(p(e^{\eta} + i) + q(e^{\eta} - i)\right)\left(p(e^{\eta} - i) + q(e^{\eta} + i)\right)\end{aligned}$$

Setting the factor equal to zero, undoing the substitutions $ax=p$ and $ac=q^2$ and solving for $x$, we obtain 

$$x_{1}=\frac{i- e^{\eta}}{i+e^{\eta}}\sqrt{\frac{c}{a}}.$$

And similarly,

$$x_{2}=\frac{i+ e^{\eta}}{i-e^{\eta}}\sqrt{\frac{c}{a}}.$$

Theorem 6. Let $a$, $b$ and $c$ be non-zero real numbers. If $ax^2+bx+c=0$, then the roots are given by:

$$x_{1,2}=\frac{1\pm e^{\theta}}{1\mp e^{\theta}}\sqrt{\frac{c}{a}},\tag{6}$$

where $\theta=\coth^{-1}{\left(\frac{b}{2\sqrt{ac}}\right)}$.

Proof. Consider the quadratic equation $ax^2+bx+c=0$. Multiplying both sides by $a$ and substituting $ax=p$ and $ac=q^2$ yields

$$p^2+bp+q^2=0.$$

Use the substitution $\coth{\theta}=\frac{b}{2q}$, Then, similar to how we proceeded previously,

$$\begin{aligned}0&=p^2+bp+q^2\\&=p^2+2qp\coth{\theta}+q^2\\&=(e^{2\theta} - 1) p^2 + 2 (e^{2\theta} + 1) p q + (e^{2\theta} - 1) q^2\\&=e^{2\theta}(p + q)^2 - (p - q)^2 \\&=\left( p e^{\theta} + p + q e^{\theta} - q \right) \left( p e^{\theta} - p + q e^{\theta} + q \right)\\&=\left(p(e^x + 1) + q(e^x - 1)\right)\left(p (e^x - 1) + q (e^x + 1)\right)\end{aligned}$$

Setting the factor equal to zero, undoing the substitutions $ax=p$ and $ac=q^2$ and solving for $x$, we obtain 

$$x_{1}=\frac{1- e^{\theta}}{1+e^{\theta}}\sqrt{\frac{c}{a}}= -\tanh\left(\frac{1}{2} \text{coth}^{-1}(x)\right)\sqrt{\frac{c}{a}}.$$

And similarly,

$$x_{2}=\frac{1+ e^{\theta}}{1-e^{\theta}}\sqrt{\frac{c}{a}}.$$

jueves, 15 de febrero de 2024

Integrals yielding $e^{\pi}$ or $e^{-\pi}$

 Lately, I've been playing a lot with integrals, and coincidentally (with a bit of algebraic manipulation), I've come across these two beauties:

$$\int_{0}^{1} \left(\frac{5}{2} \left((x - \sqrt{x^2 - 1})^{2i} + x^4\right) - 1\right) \, dx = e^{\pi},\tag{1}$$

$$\int_{0}^{1} \left( -\frac{5}{2\left( x - \sqrt{x^2 - 1}\right)^{2i}} - \frac{5x^4}{2} + 1 \right) \, dx = e^{-\pi}.\tag{2}$$

$e^{\pi}$ is known as Gelfond's constant.

I have provided these integrals as a response to a question on MathSE. The proofs are left as exercises for the reader.


jueves, 4 de enero de 2024

A generalization of Burlet's theorem to cyclic quadrilaterals

 The Burlet's theorem is a result in Euclidean geometry, which can be formulated as follows:

Theorem 1. Consider triangle $ABC$ with $\angle{BCA}=\gamma$. Let $P$ be the point where the incircle touches side $AB$, and denote the lengths $AP$ and $BP$ as $m$ and $n$, respectively. Then

$$\Delta_0=mn\cot{\frac{\gamma}{2}},\tag{1}$$

A triangle $ABC$ with $AP=m$ and $BP=n$.


where $\Delta_0$ denotes the area of $ABC$. Note that when $\gamma=\frac{\pi}{2}$, then $\Delta_0=mn$.

We adopt unconventional notation to reduce the relation of Theorem 2 into the one referenced in $(1)$. Additionally, we denote $s$ the semiperimeter, applicable to both triangles and cyclic quadrilaterals.

Proof. Let $AB=a$, $BC=b$ and $AC=c$. By Heron's formula, we have

$$\begin{aligned}\Delta_0&=\sqrt{s(s-a)(s-b)(s-c)}\\&=\sqrt{s(s-a)(s-b)(s-c)}\color{red}{\sqrt{\frac{(s-b)(s-c)}{(s-b)(s-c)}}}\\&=(s-b)(s-c)\sqrt{\frac{s(s-a)}{(s-b)(s-c)}}.\end{aligned}$$

However, using half-angle formulas for a triangle, we can express $\cot{\frac{\gamma}{2}}$ as $\sqrt{\frac{s(s-a)}{(s-b)(s-c)}}$, where $m=(s-b)$ and $n=(s-c)$. This establishes the relationship mentioned in $(1)$.

$\square$

Theorem 2 (Generalization). Consider a cyclic quadrilateral $ABCD$ with side lengths $AB=a$, $BC=b$, $CD=c$, and $DA=d$. Additionally, let $\angle DAB = \alpha$. In this context, the following relation is valid:

$$\Delta_1=(s-a)(s-d)\cot{\frac{\alpha}{2}},\tag{2}$$

A cyclic quadrilateral $ABCD$.

where $\Delta_1$ denotes the area of $ABCD$.

Proof. Similar to how we proceeded in theorem 1, using the Brahmagupta's formula, we have

$$\begin{aligned}\Delta_1&=\sqrt{(s-a)(s-b)(s-c)(s-d)}\\&=\sqrt{(s-a)(s-b)(s-c)(s-d)}\color{red}{\sqrt{\frac{(s-a)(s-d)}{(s-a)(s-d)}}}\\&=(s-a)(s-d)\sqrt{\frac{(s-b)(s-c)}{(s-a)(s-d)}}.\end{aligned}$$

Now, invoking the half-angle formulas for cyclic quadrilaterals, we have that $\cot{\frac{\alpha}{2}}=\sqrt{\frac{(s-b)(s-c)}{(s-a)(s-d)}}$, from which the relation $(2)$ is deduced.

$\square$

Let $\angle{BCD}=\gamma$ and assume that $d=0$. We have that $\alpha=\pi-\gamma$, so substituting in $(2)$, 

When $d=0$, by the alternate segment theorem, $\alpha=\pi-\gamma$.

$$\begin{aligned}\Delta_1&=(s-a)(s-0)\cot{\left(\frac{\pi-\gamma}{2}\right)}\\&=s(s-a)\tan{\frac{\gamma}{2}}\\&=s(s-a)\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}\color{red}{\sqrt{\frac{(s-b)(s-c)}{(s-b)(s-c)}}}\\&=(s-b)(s-c)\sqrt{\frac{s(s-a)}{(s-b)(s-c)}}\\&=(s-b)(s-c)\cot{\frac{\gamma}{2}},\end{aligned}$$

which is Burlet's theorem for a triangle since $m=(s-b)$ and $n=(s-c)$.

RemarkA. Burlet (Dublin) presented this theorem as a problem in the Nouvelles annales de mathématiques, Vol. 15, 1856, p. 290. Consequently, the theorem might have derived its name from him.

martes, 19 de diciembre de 2023

The half-angle formulas are central!

 As the title suggests, the half-angle formulas are central. Even more central than the law of cosines, which is nothing more than the half-angle formulas in disguise. Virtually, every metric relationship characterizing the triangle can be derived from the triangular half-angle formulas. The mind map below can give you an idea of the pivotal role that the half-angle formulas play in relation to the other most important metric relationships in classical geometry. I have also written an essay titled "The Theoretical Importance of Half-Angle Formulas" where you can see the details of the proofs, as well as the new generalizations I have managed to derive from this novel approach.

Click on the image for a better view

Identifying the central theorems of an area is important because it helps streamline the process of understanding it. By knowing the basic principles, you can, with logic and a bit of ingenuity, understand (by proving) the rest of the discipline without having to memorize as much.

martes, 22 de agosto de 2023

“Matemáticos” Dominicanos que Publican en Revistas de Dudosa Reputación

En un escenario matemático que desafía toda lógica y sentido común, un grupo de investigadores dominicanos, respaldados por el Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico (FONDOCYT) ha sido atrapado en un laberinto editorial de dudosa reputación. ¿El lugar de los hechos? La revista Mathematics, publicada por la misteriosa MDPI (Multidisciplinary Digital Publishing Institute), una editorial que ha estado en el ojo del huracán académico en los últimos años. Pero, ¿qué está ocurriendo realmente en el mundo de las publicaciones matemáticas? Prepárense para sumergirse en un cuento de matemáticas y manipulación editorial que pondrá a prueba su fe en la integridad académica.

El escándalo salió a la luz gracias al matemático de la Universidad de California, Los Angeles (UCLA)Igor Pak. Un hombre que ha dedicado su vida a la investigación matemática y cuya carrera está salpicada de logros académicos. ¿Quién mejor para arrojar luz sobre esta sombría situación? Échele un ojo a su artículo The insidious corruption of open access publishers.


¿Qué es MDPI?

MDPI es una editorial de revistas en línea de "acceso abierto" con fines de lucro. ¿Son legítimas o depredadoras? Esa es una buena pregunta. El mundo académico parece estar un poco perplejo al respecto. MDPI publica más de 200 revistas, la mayoría de las cuales tienen títulos de una sola palabra que parecen salidos de un generador aleatorio de temas: DataDiseasesDiversityDNA, etc. Si eres investigador, seguro que estas revistas han estado inundando su bandeja de entrada de correo electrónico, incluso más que los príncipes nigerianos. ¿No ha revisado su carpeta de spam últimamente? MDPI muy probablemente le ha enviado invitaciones para ser editor invitado en campos tan variados como SustainabilitySymmetry, desde Entropy hasta Axioms. Al parecer, solo necesita estar "vivo" y poder "hablar" para ser editor invitado en todas ellas.


¿Qué es Mathematics?

Ahora, centrémonos en la revista Mathematics, que ha estado en el centro de esta tormenta editorial. Fundada en 2013, ha publicado más de 7,600 artículos. Aparentemente, no está revisada por MathSciNet ni ZbMath, lo que normalmente sería una señal de advertencia. Sin embargo, sorprendentemente, su factor de impacto parece indicar que es una de las revistas matemáticas más importantes, rivalizando con nombres establecidos como DukeAmer. Jour. MathJEMS. ¿Cómo puede ser esto? Es una pregunta que aún no tiene respuesta.

Pak revela que Mathematics tiene un consejo editorial que parece más grande que una multitud en un concierto de rock. Con 11 "editores en jefe" y 814 "editores", Mathematics parece estar lista para cubrir todo el espectro matemático, o eso parece. En comparación, Trans. AMS tiene alrededor de 25 miembros en su consejo editorial. ¿Quiénes son estos editores? Pak descubrió que algunos de ellos son matemáticos respetados, pero no mencionan Mathematics en sus currículos. ¿Por qué? ¿Están avergonzados de estar asociados con esta revista? ¿O simplemente no están lo suficientemente avergonzados como para pedir que se elimine su nombre de la lista? Las preguntas sin respuesta abundan.


El Misterio del Atractivo de Mathematics

Entonces, ¿por qué Mathematics es tan popular? Algunos sugieren que es porque aceptan todo tipo de trabajos, incluso aquellos que son, en el mejor de los casos, cuestionables. Mathematics se enorgullece de tomar decisiones rápidas. Al parecer, eligen a los revisores al azar de su base de datos, a menudo sin experiencia en el tema del artículo. Esto, combinado con un plazo de dos semanas para las revisiones, da como resultado una evaluación superficial en el mejor de los casos.

Pak señala que las razones detrás de esta popularidad son claras: Mathematics acepta cualquier cosa. Los autores pueden obtener una decisión en días, en lugar de esperar un año o más en otras revistas de alto prestigio. Esto plantea un dilema para los autores que se sienten presionados por el "publica o perece". Pero, ¿qué hay detrás de esta eficiencia aparente?


La Estrategia de MDPI para Hacer Dinero: Vendiendo "Aire" a Escala Masiva

La estrategia maestra de MDPI parece ser, a simple vista, una fórmula efectiva pero perturbadora: cobrar tarifas de procesamiento de artículos (APC) y hacerlo a gran escala. Mientras que revistas de renombre como Trans. AMS, Ser. B pueden cobrar miles de dólares en APC por artículo, MDPI opta por un enfoque diferente, solicitando alrededor de 1,960 dólares suizos, lo que equivale a aproximadamente 2,000 dólares estadounidenses, por cada artículo. Sin embargo, lo que hace que esta estrategia sea verdaderamente impresionante es la sorprendente cantidad de artículos que publican. En esencia, están vendiendo "aire", un producto que a primera vista puede parecer insustancial, pero que al parecer ha cautivado a un gran número de personas.

La premisa es simple: al cobrar tarifas de APC, MDPI obtiene ingresos significativos de cada artículo que procesan. Lo que hace que esta estrategia sea altamente rentable es la voluminosa cantidad de artículos que publican a lo largo del tiempo. A pesar de que sus tarifas son relativamente bajas en comparación con las de otras revistas de prestigio, su enfoque en la cantidad sobre la calidad les ha permitido generar un flujo constante de ingresos.

Es como si estuvieran vendiendo una ilusión de reconocimiento académico: un lugar donde los investigadores pueden ver sus trabajos publicados rápidamente y, en teoría, obtener ese anhelado "factor de impacto" que tanto importa en el mundo académico. En un entorno donde la presión por publicar es intensa y el tiempo es un recurso valioso, esta oferta puede ser atractiva para muchos.

La pregunta que surge es si este modelo de negocio sacrifica la integridad académica en favor de las ganancias financieras. ¿Está MDPI más interesada en llenar sus arcas que en mantener los estándares rigurosos de revisión por pares y asegurar que solo se publiquen investigaciones de alta calidad? La respuesta a esta pregunta es esquiva y genera controversia, ya que algunos argumentan que MDPI está desdibujando las líneas entre la publicación legítima y la publicación cuestionable en su búsqueda de ingresos.


¿Predadora o No Predadora?

La gran pregunta es si Mathematics y MDPI son depredadores o simplemente astutos comerciantes. Pak argumenta que Mathematics es más parasitaria que depredadora. Los depredadores suelen engañar a los autores para que paguen por publicar en sus revistas de aspecto dudoso. Los autores son víctimas de un engaño, pensando que están obteniendo reconocimiento científico. En contraste, Mathematics parece no engañar a sus autores, quienes aparentemente están felices con el resultado.

Entonces, ¿quiénes son las víctimas aquí? Las bibliotecas universitarias y los organismos de financiamiento están gastando grandes sumas de dinero en productos de calidad inferior. Las investigaciones y la educación podrían beneficiarse mucho más de este dinero en otros lugares. En resumen, Mathematics corrompe todo el proceso de revisión por pares al monetizarlo hasta el punto en que el costo del APC se convierte en la consideración principal en lugar de la contribución matemática real del artículo.


El Futuro de las Revistas Matemáticas

Entonces, ¿qué nos depara el futuro de las revistas matemáticas? La respuesta parece clara según Pak y su sutil ironía: las bibliotecas deben dejar de pagar por el acceso abierto. Los organismos de financiamiento deben prohibir que las subvenciones se utilicen para pagar publicaciones. Los matemáticos deben huir en la dirección opuesta cada vez que alguien mencione el dinero. Simplemente digan no.

El modelo correcto, según Pak, es el modelo de superposición de arXiv, que es económico y accesible. No hay necesidad de que las bibliotecas paguen por la publicación si el artículo ya está disponible de forma gratuita en arXiv. El mensaje es claro: el dinero que las universidades gastan en APC de Mathematics sería mejor invertido en apoyar la investigación y la educación reales.

Si usted es miembro del consejo editorial de Mathematics, Pak tiene un mensaje para usted: renuncie y nunca revele que estuvo allí. Ya obtuvo lo que quería, su artículo se publicó, su nombre está en la portada de alguna edición especial (las imprimen para los autores). Quizás la vergüenza funcione en este caso.


El Caso de Idriss Aberkane y la Conjetura de Collatz

En medio del torbellino editorial que rodea a la revista Mathematics y su peculiar enfoque en la publicación de artículos matemáticos, se encuentra un caso que ha dejado perplejos a matemáticos de todo el mundo. Hablamos del controvertido Idriss Aberkane, un orador público y ensayista francés, cuyas afirmaciones y publicaciones han desencadenado una serie de reacciones, que van desde la admiración hasta la crítica más feroz.

La biografía de Aberkane es un compendio de controversia. Conocido por sus escritos y conferencias sobre desarrollo personal, en 2016 publicó un exitoso ensayo titulado "¡Libera tu mente!". Sin embargo, su carrera se vio ensombrecida por acusaciones de inflar artificialmente su currículum y de hablar sobre ciencias que no estaban dentro de su área de experiencia. Algunos investigadores cuestionaron la precisión científica de sus afirmaciones y publicaciones, lo que le valió la etiqueta de "antivacunas" y "conspirador" debido a sus opiniones sobre la COVID-19 y las vacunas.

Pero lo que ha dejado a la comunidad matemática perpleja es la afirmación de Aberkane de haber resuelto la Conjetura de Collatz. Esta conjetura, que ha desconcertado a matemáticos durante décadas, trata sobre una secuencia numérica aparentemente simple, pero aún no se ha encontrado una prueba definitiva para confirmar su veracidad. Aberkane publicó un artículo titulado Collatz Attractors Are Space-Filling en la revista Mathematics, que afirma haber resuelto este enigma.

Lo que hace que este caso sea aún más intrigante es que Mathematics, la misma revista que ha estado bajo escrutinio por sus prácticas editoriales, publicó el artículo de Aberkane. Esta revista, que ha sido objeto de debate debido a la aparente falta de revisión y los cuestionamientos sobre su integridad, sorprendió a muchos al respaldar la afirmación de Aberkane.

Aberkane no solo afirma haber resuelto la Conjetura de Collatz, sino que también se atreve a compararse con Terence Tao, un renombrado matemático galardonado con la Medalla Fields (equivalente al Nobel de las matemáticas). Según Aberkane, su resultado supera al de Tao. Esta audaz afirmación ha generado escepticismo y críticas de la comunidad matemática, que encuentra difícil aceptar que alguien sin una formación matemática sólida pueda superar a un genio como Tao.

La reacción de la comunidad matemática no se hizo esperar. Expertos en matemáticas, como Fabien Durand, profesor de Matemáticas en la Université de Picardie Jules-Verne y presidente de la Sociedad Matemática Francesa, han analizado las publicaciones de Aberkane y han señalado importantes errores en sus trabajos. Según Durand, la mayoría de las pruebas presentadas por Aberkane están al nivel de un estudiante de secundaria o de primer año de universidad.

El escepticismo y las críticas se han multiplicado, y la pregunta sigue sin respuesta: ¿Aberkane realmente ha resuelto la Conjetura de Collatz o se trata de una afirmación infundada? 

El misterio que rodea a Idriss Aberkane y su aparición en la revista Mathematics es un capítulo adicional en la saga de esta revista, que ha estado en el centro de la controversia editorial. Queda por verse si Aberkane ha logrado lo que tantos matemáticos han intentado durante décadas, o si su afirmación es simplemente una pieza más en el complicado rompecabezas de las publicaciones académicas.


Investigadores Dominicanos: Atrapados en la Telaraña de Mathematics

Pero esta historia no estaría completa sin abordar el papel de los investigadores dominicanos atrapados en esta telaraña editorial. Entre los nombres de los investigadores que han contribuido a esta revista cuestionable se encuentran Pedro A. Solares Hernandez (que incluso cuenta con su propio reportaje en Diario Libre donde se cita el artículo "Divisibility Patterns within Pascal Divisibility Networks" publicado por Mathematics), Juan Hernández y Juan Toribio Milané. Estos académicos dominicanos, a través de sus artículos, han quedado inmersos en una trama editorial llena de interrogantes.

Uno de los artículos que lleva la firma del investigador dominicano Juan Hernández es "Sequentially Ordered Sobolev Inner Product and Laguerre–Sobolev Polynomials". Este trabajo se suma a la lista de investigaciones publicadas en Mathematics, una revista que ha sido objeto de debate en el mundo académico debido a sus prácticas editoriales cuestionables.

Otro artículo, titulado "Differential Properties of Jacobi-Sobolev Polynomials and Electrostatic Interpretation", lleva la firma de Héctor Pijeira-Cabrera, Javier Quintero-Roba y Juan Toribio-Milane. En este caso, vemos a otro investigador dominicano, Juan Toribio-Milane, involucrado en la publicación de un trabajo en Mathematics.

La pregunta que surge es si estos investigadores estaban plenamente conscientes de las controvertidas prácticas editoriales de MDPI y Mathematics al enviar sus investigaciones. ¿O fueron arrastrados por la promesa de una publicación rápida y un factor de impacto aparentemente alto? ¿O simplemente se encontraron en una encrucijada editorial donde las alternativas eran limitadas?

Independientemente de las circunstancias que llevaron a estos investigadores dominicanos a elegir Mathematics como el destino de sus investigaciones, su participación en esta trama editorial plantea cuestionamientos sobre las decisiones que toman los académicos en un entorno académico cada vez más complejo y desafiante.

En última instancia, estos nombres permanecerán en la narrativa de la controvertida relación entre los investigadores y las revistas académicas de reputación dudosa. Sus historias sirven como recordatorio de la importancia de la transparencia y la evaluación crítica en el mundo de la publicación académica.