The Burlet's theorem is a result in Euclidean geometry, which can be formulated as follows:
Theorem 1. Consider triangle ABC with \angle{BCA}=\gamma. Let P be the point where the incircle touches side AB, and denote the lengths AP and BP as m and n, respectively. Then
\Delta_0=mn\cot{\frac{\gamma}{2}},\tag{1}
![]() |
A triangle ABC with AP=m and BP=n. |
where \Delta_0 denotes the area of ABC. Note that when \gamma=\frac{\pi}{2}, then \Delta_0=mn.
Proof. Let AB=a, BC=b and AC=c. By Heron's formula, we have
\begin{aligned}\Delta_0&=\sqrt{s(s-a)(s-b)(s-c)}\\&=\sqrt{s(s-a)(s-b)(s-c)}\color{red}{\sqrt{\frac{(s-b)(s-c)}{(s-b)(s-c)}}}\\&=(s-b)(s-c)\sqrt{\frac{s(s-a)}{(s-b)(s-c)}}.\end{aligned}However, using half-angle formulas for a triangle, we can express \cot{\frac{\gamma}{2}} as \sqrt{\frac{s(s-a)}{(s-b)(s-c)}}, where m=(s-b) and n=(s-c). This establishes the relationship mentioned in (1).
\square
Theorem 2 (Generalization). Consider a cyclic quadrilateral ABCD with side lengths AB=a, BC=b, CD=c, and DA=d. Additionally, let \angle DAB = \alpha. In this context, the following relation is valid:
\Delta_1=(s-a)(s-d)\cot{\frac{\alpha}{2}},\tag{2}
![]() |
A cyclic quadrilateral ABCD. |
where \Delta_1 denotes the area of ABCD.
Proof. Similar to how we proceeded in theorem 1, using the Brahmagupta's formula, we have
\begin{aligned}\Delta_1&=\sqrt{(s-a)(s-b)(s-c)(s-d)}\\&=\sqrt{(s-a)(s-b)(s-c)(s-d)}\color{red}{\sqrt{\frac{(s-a)(s-d)}{(s-a)(s-d)}}}\\&=(s-a)(s-d)\sqrt{\frac{(s-b)(s-c)}{(s-a)(s-d)}}.\end{aligned}
Now, invoking the half-angle formulas for cyclic quadrilaterals, we have that \cot{\frac{\alpha}{2}}=\sqrt{\frac{(s-b)(s-c)}{(s-a)(s-d)}}, from which the relation (2) is deduced.
\square
Let \angle{BCD}=\gamma and assume that d=0. We have that \alpha=\pi-\gamma, so substituting in (2),![]() |
When d=0, by the alternate segment theorem, \alpha=\pi-\gamma. |
\begin{aligned}\Delta_1&=(s-a)(s-0)\cot{\left(\frac{\pi-\gamma}{2}\right)}\\&=s(s-a)\tan{\frac{\gamma}{2}}\\&=s(s-a)\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}\color{red}{\sqrt{\frac{(s-b)(s-c)}{(s-b)(s-c)}}}\\&=(s-b)(s-c)\sqrt{\frac{s(s-a)}{(s-b)(s-c)}}\\&=(s-b)(s-c)\cot{\frac{\gamma}{2}},\end{aligned}
No hay comentarios:
Publicar un comentario