Processing math: 100%

miércoles, 17 de julio de 2024

Showing \frac{1}{e^{i\alpha_2}} + \frac{1}{e^{i\beta_2}} + \frac{1}{e^{i\gamma_2}} = \frac{1}{e^{i(\alpha_2+\beta_2+\gamma_2)}}

Let x be any of \alpha_1, \beta_1, or \gamma_1 and suppose \alpha_1+\beta_1+\gamma_1=\pi. Then

e^{i(\alpha_2+\beta_2)}+e^{i(\alpha_2+\gamma_2)}+e^{i(\beta_2+\gamma_2)}=1\qquad \left(x \in \mathbb{R} : \frac{x + \pi}{2\pi} \not\in \mathbb{Z}\right)\tag{1}
or
\frac{1}{e^{i\alpha_2}} + \frac{1}{e^{i\beta_2}} + \frac{1}{e^{i\gamma_2}} = \frac{1}{e^{i(\alpha_2+\beta_2+\gamma_2)}},\qquad \left(x = 2\pi n + \pi, \quad n \in \mathbb{Z}\right) \tag{2}

where complex \alpha_2=\cos^{-1}(\csc(\alpha_1)) and similarly for \beta_2 and \gamma_2.

The identities (1-2) are consequences of Theorem 1 in this blog post and the trigonometric identities 3 and 4 (counting from top to bottom) in this list.

Addendum: generalize (1-2).

No hay comentarios:

Publicar un comentario