Loading web-font TeX/Math/Italic

domingo, 29 de noviembre de 2020

An Alternative Form of Bretschneider's Formula

If you are already familiar with Bretschneider's Formula, have you ever wonder how would it like if we interchange the cosine-part by a sine-part?

There are three different forms of expressing the Bretschneider's Formula in MathWorld. In this note we will give another one which is almost as simple as the original one.

Given a general convex quadrilateral with sides a, b, c and d, its area is given by the formula

K=\sqrt{abcd\sin^2\left({\frac{\alpha+\gamma}{2}}\right)-s(s-c-d)(s-b-d)(s-b-c)}\tag{1},

where s is the semiperimeter and  \alpha and \gamma are opposite angles.

The proof is based on the following unexpected simplification lemma.

Lemma 1. Given a general quadrilateral with sides a, b, c and d, then

(s-a)(s-b)(s-c)(s-d)+s(s-c-d)(s-b-d)(s-b-c)=abcd,\tag{2}

where s is the semiperimeter.

Proof. Let's focus on the left side of the identity. Substituting and rewriting as difference of squares,

\begin{align*}\frac{\left[(c+d)^2-(a-b)^2\right]\left[(a+b)^2-(c-d)^2\right]}{16}+\frac{\left[(a+b)^2-(c+d)^2\right]\left[(a-b)^2-(c-d)^2\right]}{16}&=\\\frac{(a+b)^2\left[(c+d)^2-(c-d)^2\right]+(a-b)^2\left[(c-d)^2-(c+d)^2\right]}{16}&=\\\frac{4cd(a+b)^2-4cd(a-b)^2}{16}&=abcd.\end{align*}

\square

Now, consider the original Bretschneider's Formula, 

K=\sqrt{(s-a)(s-b)(s-c)(s-d)-abcd\cos^2\left(\frac{\alpha+\gamma}{2}\right)}.\tag{3}

Using the Pythagorean Identity \sin^2{\left(\frac{\alpha+\gamma}{2}\right)}+\cos^2{\left(\frac{\alpha+\gamma}{2}\right)}=1 in combination with (2), you get (1).

Remark. Assume d=0. Then (2) reduces to 

s(s-a)(s-b)(s-c)+s(s-b)(s-c)(s-b-c)=0

From which we get the following alternative form of Heron's Formula:

K=\sqrt{-s(s-b)(s-c)(s-b-c)}


or

K=\sqrt{-s(s-a)(s-c)(s-a-c)}


K=\sqrt{-s(s-a)(s-b)(s-a-b)}

No hay comentarios:

Publicar un comentario