Processing math: 5%

viernes, 7 de mayo de 2021

Using the half-angle formulas to derive Mahavira's identities

In a cyclic quadrilateral ABCD, let a, b, c, d denote the lengths of sides AB, BC, CD, DA, and m, n the lengths of the diagonals BD and BC. Then Mahavira's result is expressed as
m^2=\frac{(ab+cd)(ac+bd)}{ad+bc}\tag{1}
n^2=\frac{(ac+bd)(ad+bc)}{ab+cd}\tag{2}.

Proof. By the Law of Cosines, 

\begin{align*}m^2&=a^2+d^2-2ad\cos{A}\\&=a^2+d^2-2ad(2\cos^2{\frac{A}{2}}-1)\\&=(a+d)^2-4ad\cos^2{\frac{A}{2}}\end{align*}

Substituting from the half-angle formula (see formula (5) in this page) we get

\begin{align*}m^2&=(a+d)^2-\frac{ad[(a+d)^2-(b-c)^2]}{ad+bc}\\&=\frac{bc(a+d)^2+ad(b-c)^2}{ad+bc}\\&=\frac{a^2bc+bcd^2+ab^2d+ac^2d}{ad+bc}\\&=\frac{(ab+cd)(ac+bd)}{ad+bc}.\end{align*}
\square

Similarly we can get (2).

Related material 

No hay comentarios:

Publicar un comentario