Processing math: 100%

domingo, 29 de septiembre de 2019

1995 International Mathematical Olympiad, problem 1


Proof. Notice that because of the Radical Axis theorem, the  quadrilateral BCMN is cyclic. It follows that \angle{BCM}=\angle{BNM}Observe that \angle{MAC}+\angle{BCM}=90^\circ (\triangle{ACM} is a right triangle). It turns out that AMND is cyclic. Indeed, \angle{MAD}+\angle{MNB}+\angle{BND}=180^\circ.
Now, by the Radical Axis theorem, AM, ND and XY must concur.



No hay comentarios:

Publicar un comentario