Let A and B be the centers two circles (A), (B). From A, draw a tangent to (B) at C. From B, draw two tangents to (A) in D, E. From C, draw CD such that intersect (A) again in F. Similarly, from C, draw CE such that intersect (A) in I.
Prove CF = CE.
Proof.
Since BD and AC are tangent lines it follows that \angle{BDA}=\angle{ACB}=\angle{AEB}=90^\circ, hence A, B, C, D, E are concyclic. Now, see that \angle{DCE}=\angle{DBE} and \angle{ACE}=\angle{ABE}. \angle{ABE}=\frac{\angle{DBE}}{2}=\frac{\angle{DCE}}{2}, then, segment AC is an angle bisector of \angle{DCE}. Focus on \triangle{ACF}. \angle{CDB}=\angle{CEB}. \angle{FDA}=\angle{DFA}=180^\circ-(90^\circ+\angle{CDB})=90^\circ-\angle{CDB}.\angle{FAC}= 180^\circ-\angle{DCA}-(90^\circ-\angle{CDB})=90^\circ+\angle{CDB}-\angle{DCA}. Focus on \triangle{ACE}. \angle{EAC}=180^\circ-\angle{DCA}-(90^\circ-\angle{CDB}). \angle{EAC}=90^\circ+\angle{CDB}-\angle{DCA}. Hence \angle{FAC}=\angle{EAC}, and \triangle{ACF}, \triangle{ACE} are congruent. Thus, CF=CE.
No hay comentarios:
Publicar un comentario