The following problem was proposed by my esteemed friend, Ángel Mejía. However, this is problem 1315 from Gogeometry. Here I give a trigonometric proof.
The figure shows a triangle ABC with the inscribed circle O (D, E, and T are the tangency points). OB cuts chord DE and arc DE at M and F, respectively. AF and CF cut chord DE at G and N, respectively. Prove that DG = MN.Proof. Let's denote \angle{BAC}=\alpha, \angle{ABC}=\beta, \angle{ACB}=\gamma, \angle{AFM}=\angle{AFO}=\delta, and \angle{DFA}=\epsilon. Applying the sine law in triangles GFM and DFG, we obtain
GM = FG \cdot \sin{\delta},\tag{1}
DG = \frac{FG \cdot \sin{\epsilon}}{\sin{\frac12\left(\frac{\pi}{2}-\frac{\beta}{2}\right)}}.\tag{2}
Dividing (1) by (2) and then squaring, we get
\left(\frac{GM}{DG}\right)^2=\frac{\sin^2{\delta}}{\sin^2{\epsilon}}\cdot{\sin^2{\frac12\left(\frac{\pi}{2}-\frac{\beta}{2}\right)}}=\frac{\sin^2{\delta}}{\sin^2{\epsilon}}\left(\frac{1-\sin{\frac12\beta}}{2}\right).\tag{3}Now, applying the sine law once more, this time in triangles AFO and ADF, we obtain
\sin{\delta}=\frac{AO\cdot{\sin{\frac12(\alpha+\beta)}}}{AF},\tag{4}
\sin{\epsilon}=\frac{AD\cdot{\sin{\frac14(3\pi+\beta})}}{AF}.\tag{5}
Dividing (4) by (5) and then squaring, we have
\frac{\sin^2{\delta}}{\sin^2{\epsilon}}=\frac{\sec^2{\frac12\alpha}\cos^2{\frac12\gamma}}{\sin^2{\frac14(3\pi+\beta})}=\sec^2{\frac12\alpha}\cos^2{\frac12\gamma}\left(\frac{2}{1-\sin{\frac12\beta}}\right).\tag{6}
Substituting (6) in (3) and taking square roots,
\frac{GM}{DG}=\frac{\cos{\frac12\gamma}}{\cos{\frac12\alpha}}.
\frac{MN}{EN}=\frac{\cos{\frac12\alpha}}{\cos{\frac12\gamma}}.
This implies \frac{GM}{DG}=\frac{EN}{MN} and, since DM=ME, we conclude that DG=MN.
\square
No hay comentarios:
Publicar un comentario