Let I, O and \tau be the incenter, circumcenter and circumcircle of triangle ABC. The circle \omega is tangent to lines AB and BC, and touches internally \tau at T. The tangents to \tau at T and B intersect at P. Prove that IP\parallel{AC}.
Proof. It suffices to show that \angle{\frac{ACB}{2}}=\angle{CIP}. We know from lemma 2 in a previous problem that \triangle{BPI} is isosceles with \angle{IBP}=\angle{BIP}=\frac{\angle{ABC}}{2}+\angle{BAC}. We have
\angle{CIP}=\angle{BIC}-\angle{BIP}=180^\circ-\frac{\angle{ABC}}{2}-\frac{\angle{ACB}}{2}-\frac{\angle{ABC}}{2}-\angle{BAC}.
But 180^\circ-\angle{ABC}-\angle{BAC}=\angle{ACB}. Hence, \angle{CIP}=\frac{\angle{ACB}}{2}.
\square
No hay comentarios:
Publicar un comentario