Loading web-font TeX/Math/Italic

sábado, 9 de marzo de 2019

Parallel Lines Associated with a Mixtilinear Incircle

Let I, O and \tau be the incenter, circumcenter and circumcircle of triangle ABC. The circle \omega is tangent to lines AB and BC, and touches internally \tau at T. The tangents to \tau at T and B intersect at P. Prove that IP\parallel{AC}.




Proof. It suffices to show that \angle{\frac{ACB}{2}}=\angle{CIP}. We know from lemma 2 in a previous problem that \triangle{BPI} is isosceles with \angle{IBP}=\angle{BIP}=\frac{\angle{ABC}}{2}+\angle{BAC}. We have
\angle{CIP}=\angle{BIC}-\angle{BIP}=180^\circ-\frac{\angle{ABC}}{2}-\frac{\angle{ACB}}{2}-\frac{\angle{ABC}}{2}-\angle{BAC}.
But 180^\circ-\angle{ABC}-\angle{BAC}=\angle{ACB}. Hence, \angle{CIP}=\frac{\angle{ACB}}{2}.


\square

viernes, 8 de marzo de 2019

TST Peru, 2019

Let I, O and \tau be the incenter, circumcenter and circumcircle of triangle ABC. The line BI intersects \tau again at M. The circle \omega is tangent to lines AB and BC, and touches internally \tau at T. The tangents to \tau at T and B intersect at P. The lines PI and TM intersect at Q. Prove that the lines QB and MO intersect at \tau

Solution. 

Lemma 1. \angle{MBT}=\angle{OTI}.





Proof. By properties of angles in a circle, \angle{BOT}=2\angle{BAC}+2\angle{TBC}. As \triangle{OTB} is isosceles, \angle{OTB}=90^\circ-\angle{BAC}-\angle{TBC}. Moreover, 

\angle{OTC}=90^\circ-\angle{BAC}-\angle{TBC}+\angle{BAC}=90^\circ-\angle{TBC}.


\angle{ATI}=\angle{CTI} (This is a well-known property of mixtilinear incircle. See [1] and [2])   and  \angle{ATC}=180^\circ-\angle{ABC}, then,  \angle{ATI}=\angle{CTI}=90^\circ-\frac{\angle{ABC}}{2}. It follows that 

\angle{OTI}=\angle{OTC}-\angle{CTI}=90^\circ-\angle{TBC}-90^\circ+\frac{\angle{ABC}}{2}=\frac{\angle{ABC}}{2}-\angle{TBC}.
 


But \angle{MBT}=\frac{\angle{ABC}}{2}-\angle{TBC}, therefore, \angle{MBT}=\angle{OTI}.



\square


Lemma 2. BP=PT=IP.



Proof. We already know that \angle{OBT}=\angle{OTB}=90^\circ-\angle{BAC}-\angle{TBC}. But \angle{BAC}+\angle{TBC}=\angle{TBP}, then, \angle{OBT}=\angle{OTB}=90^\circ-\angle{TBP}. Let R be the circumradius, then, by the Law of Sines, 
\frac{BT}{\sin{2\angle{TBP}}}=\frac{R}{\sin{(90^\circ-\angle{TBP)}}}
BT=2R\sin{\angle{TBP}}
Focusing on quadrilateral OBIT, \angle{BIT}=360^\circ-\angle{BOT}-\angle{OBI}-\angle{OTI}. Let B' be the orthogonal projection of B onto AC. We have \angle{B'BC}=90^\circ-\angle{ACB}. Since O is the isogonal conjugate of the orthocenter, it follows \angle{OBI}=\frac{\angle{ABC}}{2}+\angle{ACB}-90^\circ. Moreover, we know from lemma 1 that \angle{OTI}=\frac{\angle{ABC}}{2}-\angle{TBC}. Then, 
\angle{BIT}=360^\circ-(2\angle{BAC}+2\angle{TBC})-(\frac{\angle{ABC}}{2}+\angle{ACB}-90^\circ)-(\frac{\angle{ABC}}{2}-\angle{TBC}).
 
But 
\angle{ABC}+\angle{BAC}+\angle{ACB}=180^\circ,
 
then,  
\angle{BIT}=270^\circ-\angle{BAC}-\angle{TBC}.
Now, focusing on \triangle{BIT}, we have
\angle{BIT}=360^\circ-(270^\circ-\angle{BAC}-\angle{TBC})=90^\circ+\angle{BAC}+\angle{TBC}=90^\circ+\angle{TBP}

and
\angle{ITB}=180^\circ-\angle{BIT}-\angle{MBT}=90^\circ-\angle{BAC}-\frac{\angle{ABC}}{2}.

As \frac{\angle{ABC}}{2}+\frac{\angle{ACB}}{2}+\frac{\angle{BAC}}{2}=90^\circ, it follows \angle{ITB}=\frac{\angle{ACB}}{2}-\frac{\angle{BAC}}{2}. Now, by the Law of Sines, 
\frac{BI}{\sin{(\frac{\angle{ACB}}{2}-\frac{\angle{BAC}}{2})}}=\frac{2R\sin{\angle{TBP}}}{\sin{(90^\circ+\angle{TBP})}}=2R\tan{\angle{TBP}}

BI=2R\tan{\angle{TBP}}\sin{(\frac{\angle{ACB}}{2}-\frac{\angle{BAC}}{2})}

As \angle{BPT}=180^\circ-2\angle{TBP}, again, by the Law of Sines, 
\frac{BP}{\sin{\angle{TBP}}}=\frac{2R\sin{\angle{TBP}}}{\sin{(180^\circ-2\angle{TBP)}}}

BP=R\tan{\angle{TBP}}

Finally, by the Law of Cosines, 
IP^2=4R^2\tan^2{\angle{TBP}}\sin^2{(\frac{\angle{ACB}}{2}-\frac{\angle{BAC}}{2})}+R^2\tan^2{\angle{TBP}}

-4R^2\tan^2{\angle{TBP}}\sin{(\frac{\angle{ACB}}{2}-\frac{\angle{BAC}}{2})}\cos{(\frac{\angle{ABC}}{2}+\angle{BAC}})

But, as \frac{\angle{ABC}}{2}=90^\circ-\frac{\angle{BAC}}{2}-\frac{\angle{ACB}}{2}, it follows
\cos{(\frac{\angle{ABC}}{2}+\angle{BAC}})=\cos{(90^\circ+\frac{\angle{BAC}}{2}-\frac{\angle{ACB}}{2}})=\sin{(\frac{\angle{ACB}}{2}-\frac{\angle{BAC}}{2})}

Thus, 
IP^2=R^2\tan^2{\angle{TBP}}

IP=R\tan{\angle{TBP}}

Therefore, BP=PT=IP.


\square
Remark. IP\parallel{AC}. A proof can be found here.

Back to the main problem.


Let R be the second intersection of QB with \tau. It suffices to show that MR is the diameter of \tau. By property of angles in a circle, \angle{PTQ}=\frac{\angle{ABC}}{2}-\angle{TBC}. We now from lemma 2 that \angle{BIT}=90^\circ+\angle{BAC}+\angle{TBC} and \triangle{BIP}, \triangle{ITP} are isosceles. It follows

 \angle{TIP}=90^\circ+\angle{BAC}+\angle{TBC}-\frac{\angle{ABC}}{2}-\angle{BAC}=90^\circ+\angle{TBC}-\frac{\angle{ABC}}{2}.
 

Consequently, \angle{TPQ}=180^\circ+2\angle{TBC}-\angle{ABC}. Hence, \angle{PQT}=\frac{\angle{ABC}}{2}-\angle{TBC}, meaning \triangle{PQT} is isosceles with PQ=PB. We deduce that \angle{PBQ}=90^\circ-\angle{BAC}-\frac{\angle{ABC}}{2}. Notice that 

\angle{MBC}+\angle{CBP}+\angle{PBQ}=\frac{\angle{ABC}}{2}+\angle{BAC}+\angle{PBQ}=90^\circ.
 

Therefore, MB\perp{BR}.

\square

References.
[1] Evan Chen, Euclidean Geometry in Mathematical Olympiads.
[2] Arseniy Akopyan, Geometry in Figures.