Let ABC be any triangle and I its Incenter. Call E and F the reflections of I around the sides AB, BC, respectively. Now, denote G the reflection of I around the midpoint, D, of side AB. Let O be the orthogonal projection of C onto AB. Prove that EF, BG and CO are concurrent.
Proof. Supose that EF and CO meet at S. It suffices to show that S, G and B are collinear. It is easy to realize that \angle{IEF}=\angle{IFE}=\frac{\angle{ABC}}{2}. It follows
\angle{CSF}=180^\circ-\angle{SFI}-\angle{IFC}-\frac{\angle{ACB}}{2}-\angle{ACB}-\angle{BAC}+90^\circ
\angle{CSF}=180^\circ-\frac{\angle{ABC}}{2}-\left(90^\circ-\frac{\angle{ACB}}{2}\right)-\frac{\angle{ACB}}{2}
-\angle{ACB}-\angle{BAC}+90^\circ=180^\circ-\frac{\angle{ABC}}{2}-\left(180^\circ-\angle{ABC}\right)=\frac{\angle{ABC}}{2}
Since \angle{CBF}=\frac{\angle{ABC}}{2}, the quadrilateral CSBF is cyclic. Consequently,
\angle{ABS}=180^\circ-\frac{\angle{ACB}}{2}-\left(\angle{BAC}-90^\circ\right)-\angle{ACB}-\frac{\angle{ABC}}{2}-\angle{ABC}=\frac{\angle{BAC}}{2}
Notice that AIBG is a parallelogram, hence, \angle{ABG}=\angle{BAI}=\frac{\angle{BAC}}{2}. Since \angle{ABG}=\angle{ABS}, the points S, G and B are collinear and the proof is complete.
Que la rectas BG,EF,CO sean concurrentes implica que existe una única homología que transforma B en G, E en F y C en O. Calculando el eje de esta homología, demostramos que los puntos intersección de las rectas BC y GO, BF y GE', FC y EO son colineales y hallamos la recta que los contiene.
ResponderEliminar