In my draft on the Unified Substitution Method for Integration (USM), I ended up using a very systematic normalization of quadratics and radicals: you shift and scale so that everything happens in the nice, symmetric interval $[-1,1]$ or outside it.
That same normalization idea leads to a neat side trick for solving inequalities. This post presents that trick, shows it on two main examples, and compares it to the traditional methods.
We’ll use three inequalities:
1. A rational inequality:
$$\frac{x-2}{x+3} \ge 0$$
2. A quadratic that changes sign:
$$x^2 - 4x + 3 \le 0$$
3. A quadratic that is always positive:
$$x^2 - 2x + 3 \ge 0$$
This is basically the same normalization that USM uses for integrals, but repurposed for inequalities.
The core idea: normalize to $[-1,1]$
The general pattern is:- Rewrite the expression so that it involves
$$\frac{(x+b)-a}{(x+b)+a}
\quad\text{or}\quad
(x+b)^2 \pm a^2$$
with $a>0$.
- Notice that
$$(x+b)-a = a\Big(\frac{x+b}{a}-1\Big),\quad
(x+b)+a = a\Big(\frac{x+b}{a}+1\Big),$$
so the sign is controlled by how $\dfrac{x+b}{a}$ compares to $-1$ and $1$.
- Reduce the problem to very simple linear inequalities in $\dfrac{x+b}{a}$.
Example 1 – Rational inequality
$$\frac{x-2}{x+3} \ge 0$$
Traditional method (very briefly)
Zeros and pole:$x-2=0 \Rightarrow x=2$,
$x+3=0 \Rightarrow x=-3$.
A sign chart on the intervals $(-\infty,-3)$, $(-3,2)$, $(2,\infty)$ shows the fraction is $\ge 0$ on
$$(-\infty,-3)\cup[2,\infty).$$
Normalization trick
Write$$\frac{x-2}{x+3} = \frac{x+\color{red}{b-a}}{x+\color{red}{b+a}}$$
and solve this little system:
$$\left. b-a=-2\atop a+b=3\right\}$$
This gives:
$$a = \frac{5}{2},\quad b = \frac{1}{2}.$$
Now plug $a=\dfrac52$, $b=\dfrac12$:
- $\dfrac{x+b}{a} \ge 1 \Rightarrow x \ge 2$,
- $\dfrac{x+b}{a} \le -1 \Rightarrow x \le -3$, but $x=-3$ is excluded.
$$(-\infty,-3)\cup[2,\infty).$$
No sign chart; just a tiny $2\times 2$ system and linear inequalities.
Example 2 – Quadratic inequality
$$x^2 - 11x + 13 \ge 0$$
Traditional method (very briefly)
Compute the discriminant:
$$\Delta = 11^2 - 4\cdot 1 \cdot 13 = 121 - 52 = 69 > 0.$$
Roots:
$$x = \frac{11 \pm \sqrt{69}}{2}.$$
Since the parabola opens upwards, the quadratic is $\ge 0$ outside the interval between the roots:
$$x \in \left(-\infty,\frac{11-\sqrt{69}}{2}\right] \cup \left[\frac{11+\sqrt{69}}{2},\infty\right).$$
Normalization trick (completing the square)
Complete the square:
$$x^2 - 11x + 13 = \left(x - \frac{11}{2}\right)^2 - \frac{69}{4}.$$
This fits
$$(x+\color{red}{b})^2 - \color{red}{a^2}$$
with
$$b = -\frac{11}{2}, \quad a = \frac{\sqrt{69}}{2}.$$
Again, we have:
$$\frac{x+b}{a} \le -1 \quad\text{or}\quad \frac{x+b}{a} \ge 1.$$
Substituting $b=-\dfrac{11}{2}$, $a=\dfrac{\sqrt{69}}{2}$:
$$x \le \frac{11-\sqrt{69}}{2}\quad\text{or}\quad x \ge \frac{11+\sqrt{69}}{2}.$$
So again,
$$x \in \left(-\infty,\frac{11-\sqrt{69}}{2}\right] \cup \left[\frac{11+\sqrt{69}}{2},\infty\right).$$
No hay comentarios:
Publicar un comentario