domingo, 22 de mayo de 2022

La importancia teórica de las fórmulas de medio ángulo

 A diferencia de las leyes de senosde cosenosde las tangentes, que son muy bien conocidas, las fórmulas de medio ángulo parecen (aunque aparecen tímidamente en la literatura matemática) no gozar de la misma popularidad. Así, mientras hay capítulos enteros dedicados a la ley de senos, de cosenos, de tangentes y a sus aplicaciones, no hay ni siquiera un artículo de Wikipedia sobre las fórmulas de medio ángulo. En estos momentos a lo mejor te estés imaginando esta versión de las fórmulas de medio ángulo

$$\sin{\frac{\alpha}{2}}=\pm\sqrt{\frac{1-\cos{\alpha}}{2}}\qquad\qquad\cos{\frac{\alpha}{2}}=\pm\sqrt{\frac{1+\cos{\alpha}}{2}},$$

que sí aparecen en los libros de texto de los primeros cursos de trigonometría (por lo menos con el que yo estudié). Pero en realidad me refiero a estas

$$\sin^2{\frac{\alpha}{2}} = \frac{(s-b)(s-c)}{bc}\qquad\qquad\cos^2{\frac{\alpha}{2}}= \frac{s(s-a)}{bc},\tag{1}$$ 

donde $a$, $b$ y $c$ son los lados de un triángulo, $\alpha$ es el ángulo opuesto al lado $a$ y $s$ es el semiperímetro. La referencia más remota de estas fórmulas la encontré en una conversación publicada online entre Conway y Doyle, donde Conway las usa para demostrar la fórmula de Herón y luego señala haber sacado la demostración de una secuela de Casey.

Descubrí $(1)$ de manera independiente intentando demostrar la ley de cosenos por contradicción. Cuando me di cuenta que eran conocidas, intenté generalizarlas y obtuve esto

$$\sin^2{\frac{\alpha}{2}}=\frac{(s-a)(s-d)}{ad+bc}\qquad\qquad \cos^2{\frac{\alpha}{2}}=\frac{(s-b)(s-c)}{ad+bc},\tag{2}$$

donde $a$, $b$, $c$ y $d$ son los lados de un cuadrilátero cíclico, $s$ es su semiperímetro y $\angle{DAB}=\alpha$.

Antes de descubrir la conversación entre Conway y Doyle, me había ilusionado pensando haber encontrado una demostración original de la fórmula de Herón usando $(1)$. Cuando encontré $(2)$, pensé que por un razonamiento análogo lograría demostrar la fórmula de Brahmagupta. Y así fue. Pero en un foro de geometría alguien me refirió a un antiguo libro griego que contenía a $(2)$. Luego envié mi demostración de la fórmula de Brahmagupta a Martin Josefsson quien me remitió al libro «A Treatise On Plane Trigonometry» de Casey, donde ya aparecía mi demostración. Pero no me rendí e intenté generalizar $(2)$ consiguiendo esto

$$ad\sin^2{\frac{\alpha}{2}}+bc\cos^2{\frac{\gamma}{2}}=(s-a)(s-d)\qquad\qquad bc\sin^2{\frac{\gamma}{2}}+ad\cos^2{\frac{\alpha}{2}}=(s-b)(s-c),\tag{3}$$

donde $a$, $b$, $c$ y $d$ son los lados de un cuadrilátero general, $s$ su semiperímetro, $\angle{DAB}=\alpha$ y $\angle{BCD}=\gamma$.

La fórmula de Bretschneider es conocida por ser una generalización de las fórmulas de Herón y Brahmagupta. Naturalmente, me pregunté si podría generalizar la demostración de Casey de la fórmula de Brahmagupta usando $(3)$ y así derivar la fórmula de Bretschneider. Y lo hice. Envié mis fórmulas en $(3)$ y mi demostración de la fórmula de Bretschneider a Josefsson (entre muchos otros matemáticos) y esto me dijo:

«Me gusta su artículo, especialmente cómo pone estas fórmulas importantes en un solo marco. No puedo decir que recuerdo haber visto las identidades (4) y (5) en ningún otro lugar antes.»

Donde las identidades $(4)$ y $(5)$ son las identidades en $(3)$ de esta publicación.

Y luego dijo:

«Aunque ya se ha escrito mucho sobre estas fórmulas, las ideas para probar la fórmula de Bretschneider y el área de un cuadrilátero bicéntrico son novedosas que yo sepa. Espero que publiquen su trabajo.»

Decidí escribir un artículo sobre estas fórmulas titulado «Two Identities and their Consequences» que se publicó en MATINF, una revista rumana.

En casi tres años que tengo explorando posibles aplicaciones de $(1, 2, 3)$, esto es lo que he encontrado:

Usando $(1, 2)$  también podemos derivar (puedes ver las demostraciones aquí):
  • La ley de cosenos
  • La ley de senos
  • La ley de las tangentes
  • El teorema de Stewart
  • Las fórmulas para ángulos compuestos
  • La fórmula de Mollweide
  • El producto $AI\cdot{BI}\cdot{CI}$
  • La fórmula de la longitud del bisector
  • Las fórmulas de Mahavira
  • El lema de Zelich

Otras más obvias:
  • $\tan{\frac{\alpha}{2}}\tan{\frac{\beta}{2}}+\tan{\frac{\alpha}{2}}\tan{\frac{\gamma}{2}}+\tan{\frac{\beta}{2}}\tan{\frac{\gamma}{2}}=1$
  • $r=4R\sin{\frac{\alpha}{2}}\sin{\frac{\beta}{2}}\sin{\frac{\gamma}{2}}$
  • $s=4R\cos{\frac{\alpha}{2}}\cos{\frac{\beta}{2}}\cos{\frac{\gamma}{2}}$
  • Podría seguir...

Las fórmulas $(1, 2, 3)$ explican mejor de lo que he visto en cualquier otra parte el desarrollo Herón-Brahmagupta-Bretschneider. Esto me hizo preguntarme qué pasaría si aplicaba de forma análoga las fórmulas de medio ángulo a fórmulas donde aparecían de forma explícita ángulos medios, como la fórmula de Mollweide (o de Newton) o la ley de tangentes. Es así como surgieron estas dos generalizaciones:


Al cuestionar a Martin Josefsson sobre la originalidad de estas generalizaciones esto fue lo que dijo:

«Hasta donde puedo recordar, no he visto ninguna de ellas, al menos no en libros o artículos modernos, e incluso si alguna de ellas se encuentra en un texto antiguo, al menos no son muy conocidas, y merecen ser más conocidas.»


«Nunca vi estos resultados antes. Ciertamente, sería interesante encontrar una generalización no euclidiana de estos resultados.»

Aparte de la demostración de la fórmula de Bretschneider, no he encontrado más aplicaciones para $(3)$.

Curiosamente, los ángulos medios parecen estar por todas partes: desde los teoremas de ángulos en una circunferencia hasta la técnica de Sustitución de Weierstrass en Cálculo Integral. Incluso cuando Viète encontró su fórmula de $\pi$ usando un producto infinito, él empezó escribiendo $\sin{x}=2\sin{\frac12x}\cos{\frac12x}$. 

Algunos comentarios adicionales:

Thibaut Demaerel, investigador postdoctoral en física teórica en KU Leuven, comentó en el foro MathSE:
«Yo argumentaría (ciertamente un poco por la tangente) que tales fórmulas de medio ángulo proporcionan un medio elemental para probar el teorema fundamental del álgebra (una prueba accesible para una audiencia de secundaria).»

James Cook, de la Universidad de Alabama, comentó:
«Creo que has presentado un caso convincente de que estas fórmulas son bastante básicas. Por supuesto, sospecho que podría derivarse casi todo partiendo de la ley de los cosenos. ¿Qué es la ley de cosenos sino el corazón del producto escalar? Y, ¿qué es el producto escalar? Es la encapsulación algebraica del ángulo. Como mínimo, esto debería aparecer como problemas o una sección de tema adicional en los textos de trigonometría. Parece que esto sería excelente para un curso de honor de escuela de verano para dotados en matemáticas. El hecho de que no se enseñe podría aprovecharse para permitir que los estudiantes lo descubran.»

No hay comentarios:

Publicar un comentario