Consider a triangle \triangle{ABC} and its Incenter, I. Denote R and r the circumradius and inradius, respectively. Also let AI=k; BI=l; CI=m. Then, the following identity holds
klm=4Rr^2
\cos^2{\frac{\gamma}{2}}= \frac{s(s-c)}{ab}\tag{1}
where s is the semiperimeter and \gamma denotes the angle \angle{ACB}. The proof for this formula can be found here.
Notice that \cos{\frac{\gamma}{2}}=\frac{(s-c)}{m}. Also, because of (1) we have \cos{\frac{\gamma}{2}}=\sqrt{\frac{s(s-a)}{ab}}. Equating both expressions and solving for m^2,
m^2=\frac{ab(s-c)}{s}
Similarly you get k^2=\frac{bc(s-a)}{s} and l^2=\frac{ac(s-b)}{s}. Hence,
(klm)^2=\frac{a^2b^2c^2(s-a)(s-b)(s-c)}{s^3}=\frac{a^2b^2c^2s(s-a)(s-b)(s-c)}{s^4}Substituting from Heron's formula,
(klm)^2=\frac{a^2b^2c^2\Delta^2}{s^4}
Simplifying and using the well-known formulas abc=4R\Delta and \Delta=rs you get the desired result.
klm=\frac{abc\Delta}{s^2}=\frac{4R\Delta^2}{s^2}=4Rr^2
No hay comentarios:
Publicar un comentario