The problem:
Solution. We assume $x > 0$.
&= \frac{3\sqrt{2}}{32}\left(s^2 - \frac{1}{s^2}\right) + \frac{3\sqrt{2}}{8}\ln|s| - \frac{\sqrt{2}}{2(s^2+1)} + C
\end{aligned}$$
Where:
$$s = \sqrt{\frac{2}{3}}u + \sqrt{\frac{2}{3}u^2+1}, \quad u = \sqrt{t-2}, \quad t = x^2+1+\sqrt{x^4+x^2+1}.$$Using the symmetry of the even function $f(x)$, we calculate $2 \int_{0}^{1/2} f(x) \, dx$:
& x=1/2 \implies s = \sqrt{\frac{2+\sqrt{7}}{\sqrt{3}}}\end{aligned}$$
$$\begin{aligned}\int_{-1/2}^{1/2} f(x) \, dx &= 2 \left[ F(s) \right]_{1}^{\sqrt{\frac{2+\sqrt{7}}{\sqrt{3}}}} \\[1em] &= 2 \left[ \left( \frac{\sqrt{14}}{8} - \frac{\sqrt{2}}{4} + \frac{3\sqrt{2}}{16}\ln\left(\frac{2+\sqrt{7}}{\sqrt{3}}\right) \right) - \left( -\frac{\sqrt{2}}{4} \right) \right] \\[1em] &= 2 \left[ \frac{\sqrt{14}}{8} + \frac{3\sqrt{2}}{16}\ln\left(\frac{2+\sqrt{7}}{\sqrt{3}}\right) \right] \\[1em] &= \frac{\sqrt{14}}{4} + \frac{3\sqrt{2}}{8}\ln\left(\frac{2+\sqrt{7}}{\sqrt{3}}\right) \end{aligned}$$