lunes, 15 de diciembre de 2025

Weierstrass as a Special Case of the USM Framework

"The world's sneakiest substitution." Michael Spivak


The classical Weierstrass substitution for integrals of the form
\[\int R(\sin\omega, \cos\omega)\,d\omega\]
is a special case of Transform 5 in the USM framework, corresponding to the circular case with parameters \(a = 1\) and \(b = 0\).

Derivation
Let
\[I = \int R(\sin\omega, \cos\omega)\,d\omega.\]
Set \(x = \sin\omega\), so that
\[\cos\omega = \sqrt{1 - x^2} \quad (\text{using the principal square root, e.g., } \cos\omega \geq 0 \text{ for } \omega \in [-\pi/2,\pi/2]),\]
and
\[d\omega = \frac{dx}{\cos\omega} = \frac{dx}{\sqrt{1 - x^2}}.\]
Hence,
\[I = \int \frac{R\!\left(x, \sqrt{1 - x^2}\right)}{\sqrt{1 - x^2}}\,dx.\]
Transform 5 handles integrals involving \(\sqrt{a^2 - (x+b)^2}\) on the domain \(|y| \leq 1\) with \(y = (x+b)/a\). Take \(a = 1\), \(b = 0\) (so \(y = x\)) and let the parameter be \(r\) (as in the paper). The transform gives:
\[x = \frac{2r}{1+r^2}, \quad \sqrt{1 - x^2} = \frac{1 - r^2}{1 + r^2}, \quad dx = \frac{2(1 - r^2)}{(1 + r^2)^2}\,dr.\]
Substitute into the integral
\[\begin{aligned} I &= \int \frac{R\!\left(x, \sqrt{1 - x^2}\right)}{\sqrt{1 - x^2}}\,dx \\ &= \int \frac{R\!\left(\frac{2r}{1+r^2}, \frac{1 - r^2}{1 + r^2}\right)}{\frac{1 - r^2}{1 + r^2}} \cdot \frac{2(1 - r^2)}{(1 + r^2)^2}\,dr \\ &= \int R\!\left(\frac{2r}{1+r^2}, \frac{1 - r^2}{1 + r^2}\right)\frac{2}{1 + r^2}\,dr.\end{aligned}\]
The final expression is exactly the Weierstrass substitution formula:
\[\int R(\sin\omega, \cos\omega)\,d\omega= \int R\!\left(\frac{2r}{1+r^2}, \frac{1 - r^2}{1 + r^2}\right) \frac{2}{1 + r^2}\,dr.\]
On the principal branch where \(\psi=\sin^{-1}(x)=\omega\), this parameter is
\[r=\tan\!\Bigl(\frac{\psi}{2}\Bigr)=\tan\!\Bigl(\frac{\omega}{2}\Bigr),\]

Thus, the Weierstrass substitution emerges naturally from Transform 5 by setting \(a = 1\), \(b = 0\) and interpreting the integrand appropriately. This demonstrates (again!) that the USM unifies and generalizes classical substitution techniques (refer to Section 6 in the paper, which details how the USM also encompasses Euler substitutions 1 and 2), including the half‑angle tangent substitution of Weierstrass. Moreover, USM creates new "Weierstrass-like" substitutions (Transforms 1 & 2) that work for hyperbolic/algebraic regions ($|y| \ge 1$) where the standard $\tan(\omega/2)$ is not typically applied.

miércoles, 10 de diciembre de 2025

MIT Integration Bee 2023 - Finals - Problem 3

The problem:



SolutionWe assume $x > 0$.

$$\begin{aligned}I &= \int \sqrt{x^2+1+\sqrt{x^4+x^2+1}} \, dx \\ &= \int \frac{t^2-t+1}{(2t-1)^{3/2}\sqrt{t-2}} \, dt & \left(t = x^2+1+\sqrt{x^4+x^2+1}\right) \\[1em] &= 2 \int \frac{u^4+3u^2+3}{(2u^2+3)^{3/2}} \, du & \left(u^2 = t-2\right) \\[1em] &= \frac{\sqrt{2}}{2} \int \frac{3s^8+12s^6+34s^4+12s^2+3}{8s^3(s^2+1)^2} \, ds & \left(\text{USM Transform 3: } u = \sqrt{\frac{3}{2}}\frac{s^2-1}{2s}\right) \\[1em] &= \frac{\sqrt{2}}{2} \int \left( \frac{3s}{8} + \frac{3}{4s} + \frac{3}{8s^3} + \frac{2s}{(s^2+1)^2} \right) \, ds & (\text{PFD}) \\[1em] &= \frac{\sqrt{2}}{2} \left( \frac{3s^2}{16} + \frac{3}{4}\ln|s| - \frac{3}{16s^2} - \frac{1}{s^2+1} \right) + C \\[1em]
&= \frac{3\sqrt{2}}{32}\left(s^2 - \frac{1}{s^2}\right) + \frac{3\sqrt{2}}{8}\ln|s| - \frac{\sqrt{2}}{2(s^2+1)} + C
\end{aligned}$$

Where:
$$s = \sqrt{\frac{2}{3}}u + \sqrt{\frac{2}{3}u^2+1}, \quad u = \sqrt{t-2}, \quad t = x^2+1+\sqrt{x^4+x^2+1}.$$

Using the symmetry of the even function $f(x)$, we calculate $2 \int_{0}^{1/2} f(x) \, dx$:

$$\begin{aligned}\text{Limits for } s: \quad & x=0 \implies s=1 \\
& x=1/2 \implies s = \sqrt{\frac{2+\sqrt{7}}{\sqrt{3}}}\end{aligned}$$

$$\begin{aligned}\int_{-1/2}^{1/2} f(x) \, dx &= 2 \left[ F(s) \right]_{1}^{\sqrt{\frac{2+\sqrt{7}}{\sqrt{3}}}} \\[1em] &= 2 \left[ \left( \frac{\sqrt{14}}{8} - \frac{\sqrt{2}}{4} + \frac{3\sqrt{2}}{16}\ln\left(\frac{2+\sqrt{7}}{\sqrt{3}}\right) \right) - \left( -\frac{\sqrt{2}}{4} \right) \right] \\[1em] &= 2 \left[ \frac{\sqrt{14}}{8} + \frac{3\sqrt{2}}{16}\ln\left(\frac{2+\sqrt{7}}{\sqrt{3}}\right) \right] \\[1em] &= \frac{\sqrt{14}}{4} + \frac{3\sqrt{2}}{8}\ln\left(\frac{2+\sqrt{7}}{\sqrt{3}}\right) \end{aligned}$$