Processing math: 100%

miércoles, 28 de diciembre de 2022

Van Khea's areal problem

 The following problem is a generalization of my previous problem conjectured by Van Khea. We will give a proof.

We will be using standard notation: \lvert{BC}\rvert=a, \lvert{AC}\rvert=b, \lvert{AB}\rvert=c; \angle{BAC}=\alpha, \angle{ABC}=\beta and \angle{BCA}=\gamma. If X, Y and Z are the vertices of a triangle, we denote its area [XYZ].

Problem. Let ABC be a triangle and P any point on the plane of ABC. Let X, Y and Z be arbitrary points on sides BC, AC and AB, respectively. Let D be the reflection of P around X. Similarly, define E and F. Denote U, V and W the midpoints of sides BC, AC and AB, respectively. Let D' be the reflection of D around U. Similarly, define E' and F' (see figure below). Prove that

[DEF]+[D'E'F']=[ABC].


Proof. Denote AZ=g, BZ=h, BX=j, CX=k, CY=l and AY=m. The area of ​​triangle XYZ can be expressed as follows
[XYZ]=\frac12bc\sin{\alpha}-\frac12gm\sin{\alpha}-\frac12hj\sin{\beta}-\frac12kl\sin{\gamma}.
Since triangles XYZ and DEF are homothetic with scale factor 2, it follows that [DEF]=4[XYZ]. Thus, we have
{[DEF]}=2bc\sin{\alpha}-2gm\sin{\alpha}-2hj\sin{\beta}-2kl\sin{\gamma}.\tag{1}
Dividing both sides of (1) by [ABC] we have
\frac{[DEF]}{[ABC]}=4\left[1-\left(\frac{gm}{bc}+\frac{hj}{ca}+\frac{kl}{ab}\right)\right].\tag{2}
Segments UX and PD' are homothetic with center at D and scale factor 2. It follows that
PD'=2(j-\frac12a)=2j-a.
Similarly, we get PE'=b-2l and PF'=c-2g. Since UX and PD' are homothetic segments, then UX and PD' are parallel and so are VY and PE'. Hence \angle{D'PE'}=\gamma. Similarly, \angle{D'PF'}=\beta. So the area of triangle D'E'F' is given by the expression
\begin{aligned}{[D'E'F']}&=[D'PE']+[D'PF']-[E'F'P]\\&=\frac{(2j-a)(b-2l)\sin{\gamma}}{2}+\frac{(2j-a)(c-2g)\sin{\beta}}{2}-\frac{(b-2l)(c-2g)\sin{(\beta+\gamma)}}{2}.\end{aligned}
Taking into account that \sin{(\beta+\gamma)}=\sin{(\pi-\alpha)}=\sin{\alpha} and dividing by [ABC] we obtain
\frac{[D'E'F']}{[ABC]}=\frac{(2j-a)(b-2l)}{ab}+\frac{(2j-a)(c-2g)}{ca}-\frac{(b-2l)(c-2g)}{bc}.\tag{3}
Adding equations (2) and (3), expanding and factorizing,
\frac{[DEF]}{[ABC]}+\frac{[D'E'F']}{[ABC]}=\frac{ca(4l+b)-4ga(m+l-b)-4j(b(g+h-c)+lc)-4klc}{abc}.
But b=m+l, c=g+h and a=j+k, so
\begin{aligned}\frac{[DEF]}{[ABC]}+\frac{[D'E'F']}{[ABC]}&=\frac{ca(4l+b)-4jlc-4klc}{abc}\\&=\frac{ca(4l+b)-4cl(j+k)}{abc}\\&=\frac{ca(4l+b)-4cla}{abc}\\&=1.\end{aligned}
Therefore, 
[DEF]+[D'E'F']=[ABC].
\square
Note: The point P may cross the side lines of the triangle ABC in points either interior or exterior to the sides. The reasoning in cases other than that considered above requires only minor adjustments.

Remark: This theorem remains valid if P is an arbitrary point in three-dimensional space.

See also

viernes, 23 de diciembre de 2022

Areal property of the circumcircle mid-arc triangle

 The following theorem is a property of the circumcircle mid-arc triangle which appears to be unknown.

We will be using standard notation: \lvert{BC}\rvert=a, \lvert{AC}\rvert=b, \lvert{AB}\rvert=c; \angle{BAC}=\alpha, \angle{ABC}=\beta and \angle{BCA}=\gamma; s for the semiperimeter; R for the circumradius and r for the inradius. If X, Y and Z are the vertices of a triangle, we denote its area [XYZ].

Problem. Let ABC be a triangle and I its Incenter. Denote \omega the circumcircle of ABC. Let AI intersect \omega again at D. Define E and F cyclically. Let U, V and W be the midpoints of DE, EF and FD, respectively. Let A' be the reflection of A with respect to V. Define B' and C' cyclically (see figure 1). Then

[DEF]=[ABC]+[A'B'C'].\tag{1}

Figure 1


Lemma 1. If ABC is a triangle and DEF is its circumcircle mid-arc triangle, then

\boxed{\frac{[ABC]}{[DEF]}=\frac{2r}{R}.}\tag{2}

Proof. By property of inscribed angles, \angle{BAF}=\angle{ACF}=\frac12\gamma and \angle{CAE}=\frac12\beta. It follows that
\begin{aligned}&\angle{EAF}=\alpha+\frac12\beta+\frac12\gamma\\&=\pi-\beta-\gamma+\frac12\beta+\frac12\gamma\\&=\pi-\frac12(\beta+\gamma).\end{aligned}
By the law of sines, 
\frac{EF}{\sin{(\pi-\frac12(\beta+\gamma))}}=\frac{EF}{\sin{\frac12(\beta+\gamma)}}=\frac{AF}{\sin{\frac12\gamma}}.\tag{3}
Since \angle{AFC}=\beta and, again, by the law of sines, 
\frac{AF}{\sin{\frac12\gamma}}=\frac{b}{\sin{\beta}}.\tag{4}
From (3) and (4) we get
EF=\frac{b\sin{\frac12(\beta+\gamma)}}{\sin{\beta}}=2R\sin{\frac12(\pi-\alpha)}=2R\cos{\frac12\alpha}.\tag{5}
Analogously, we can find that
DF=2R\cos{\frac12\beta}\qquad ED=2R\cos{\frac12\gamma}.\tag{6}
Note that \angle{DFC}=\frac12\alpha and \angle{EFC}=\frac12\beta, so \angle{DFE}=\frac12(\alpha+\beta). Then the area of DEF is given by
[DEF]=\frac{EF\cdot{DF}\sin{\frac12(\alpha+\beta)}}{2}=2R^2\cos{\frac12\alpha}\cos{\frac12\beta}\cos{\frac12\gamma}.\tag{7}
Elsewhere we have proved that s=4R\cos{\frac12\alpha}\cos{\frac12\beta}\cos{\frac12\gamma} (for a proof, see section 3, c), here). As the area of ABC can also be written as [ABC]=rs, we can rewrite it like this
[ABC]=4Rr\cos{\frac12\alpha}\cos{\frac12\beta}\cos{\frac12\gamma}.\tag{8}
Dividing (8) by (7) we get
\frac{[ABC]}{[DEF]}=\frac{2r}{R}.
\square
Lemma 2. Let ABC be an triangle and H its orthocenter. Let l_a, l_b and l_c be the perpendicular bisectors of sides BC, AC and AB, respectively. Denote H_1, H_2 and H_3 the reflections of H around l_a, l_b and l_c, respectively. Then
 \boxed{\frac{[H_1H_2H_3]}{[ABC]}=\frac{(a^2-b^2)(a^2-c^2)}{b^2c^2}+\frac{(a^2-c^2)(b^2-c^2)}{a^2b^2}-\frac{(a^2-b^2)(b^2-c^2)}{a^2c^2}.}\tag{9}
Proof. From figure 2, note that 
HH_3=2(\frac{c}{2}-AC_1).\tag{10}
Figure 2

Let CH intersect AB in C_1. Applying the law of sines in the triangle ACC_1, we have that
b=\frac{AC_1}{\sin{(\frac{\pi}{2}-\alpha)}}=\frac{AC_1}{\cos{\alpha}}.
So, AC_1=b\cos{\alpha}. Substituting in (10) and then substituting from the law of cosines \cos{\alpha}=\frac{b^2+c^2-a^2}{2bc} we have
HH_3=2(\frac{c}{2}-b\cos{\alpha})=c-2b\cos{\alpha}=\frac{a^2-b^2}{c}.
Similarly, we get that HH_1=\frac{b^2-c^2}{a} and HH_2=\frac{a^2-c^2}{b}. Now, note that 
[H_1H_2H_3]=[HH_2H_3]+[HH_1H_2]-[HH_1H_3].\tag{11}
As HH_3 and HH_2 are perpendicular to l_c and l_a, respectively, then \angle{H_2HH_3}=\alpha and similarly \angle{H_2HH1}=\gamma. Thus, equation (11) can be written as follows
[H_1H_2H_3]=\frac{(a^2-b^2)(a^2-c^2)\sin{\alpha}}{2bc}+\frac{(a^2-c^2)(b^2-c^2)\sin{\gamma}}{2ab}-\frac{(a^2-b^2)(b^2-c^2)\sin{(\alpha+\gamma)}}{2ac}.\tag{12}
Dividing both sides of equation (12) by [ABC]=\frac12bc\sin{\alpha}=\frac12ab\sin{\gamma}=\frac12ac\sin{\beta} and taking into account that \sin{(\alpha+\gamma)}=\sin{(\pi-\beta)}=\sin{\beta}.
\frac{[H_1H_2H_3]}{[ABC]}=\frac{(a^2-b^2)(a^2-c^2)}{b^2c^2}+\frac{(a^2-c^2)(b^2-c^2)}{a^2b^2}-\frac{(a^2-b^2)(b^2-c^2)}{a^2c^2}.
\square
Note that the terms on the right hand side of the equation (9) are the products of the Mollweide's formulas. Substituting from Mollweide's formulas and applying the identity of sine of double angle, we can write the equation (9) as follows
\boxed{\frac{[H_1H_2H_3]}{[ABC]}=\frac{\sin{(\alpha-\beta)}\sin{(\alpha-\gamma)}}{\sin{\gamma}\sin{\beta}}+\frac{\sin{(\alpha-\gamma)}\sin{(\beta-\gamma)}}{\sin{\alpha}\sin{\beta}}-\frac{\sin{(\alpha-\beta)}\sin{(\beta-\gamma)}}{\sin{\alpha}\sin{\gamma}}.}\tag{13}

Back to the main problem
It is well-known that the orthocenter of the circumcircle mid-arc triangle is the incenter of the reference triangle. So IB\perp{FD}. Moreover, because of properties of inscribed angles, \angle{IDF}=\angle{FCB}=\angle{FDB}=\frac12\gamma 
and \angle{IFD}=\angle{CAD}=\angle{DAB}=\angle{DFB}=\frac12\alpha. 
Hence, by ASA, DFI\cong{DFB}. As a consequence, I is the reflection of B around FD. As B' is the reflection of B around W, it follows that the perpendicular bisector of FD must also bisect IB', meaning that B' is the reflection of the orthocenter of DEF, I, around the perpendicular bisector of DF. Similarly, we conclude that A' and C' are the reflections of I around the perpendicular bisectors of EF and DE, respectively. Now our goal will be to show that \frac{[A'B'C']}{[DEF]}=1-\frac{2r}{R}. Note that \angle{EFD}=\frac12(\alpha+\beta), \angle{EDF}=\frac12(\beta+\gamma) and  \angle{DEF}=\frac12(\alpha+\gamma). Applying formula (13) to triangles A'B'C' and DEF and substituting angles we have
\frac{[A'B'C']}{[DEF]}=\frac{\sin{\frac12(\alpha-\gamma)}\sin{\frac12(\beta-\gamma)}}{\cos{\frac12\beta}\cos{\frac12\alpha}}+\frac{\sin{\frac12(\beta-\gamma)}\sin{\frac12(\beta-\alpha)}}{\cos{\frac12\gamma}\cos{\frac12\alpha}}-\frac{\sin{\frac12(\alpha-\gamma)}\sin{\frac12(\beta-\alpha)}}{\cos{\frac12\gamma}\cos{\frac12\beta}}. \tag{14}
Note that the right hand side of the equation (14) are, again, products of the Mollweide's formulas. Thus, we have
\begin{aligned}\frac{[A'B'C']}{[DEF]}&=\frac{(a-c)(b-c)}{ab}+\frac{(b-c)(b-a)}{ac}-\frac{(a-c)(b-a)}{bc}\\&=1-\frac{c(a+b-c)}{ab}+1-\frac{b(a-b+c)}{ac}+1-\frac{a(-a+b+c)}{bc}.\end{aligned}\tag{15}
Substituting from the half-angle formulas
\begin{aligned}\frac{[A'B'C']}{[DEF]}&=3-\frac{2a\cos^2{\frac12\alpha}+2b\cos^2{\frac12\beta}+2c\cos^2{\frac12\gamma}}{s}\\&=1-\frac{a\cos{\alpha}+b\cos{\beta}+c\cos{\gamma}}{s}.\end{aligned}\tag{16}
Substituting from the law of sines, factorizing and applying double-angle identity for sine,
\begin{aligned}\frac{[A'B'C']}{[DEF]}&=1-\frac{R(\sin{2\alpha}+\sin{2\beta}+\sin{2\gamma})}{s}.\end{aligned}\tag{17}
But \sin{2\alpha}+\sin{2\beta}+\sin{2\gamma}=4\sin{\alpha}\sin{\beta}\sin{\gamma}=\frac{abc}{2R^3}=\frac{2rs}{R^2}, hence
\frac{[A'B'C']}{[DEF]}=1-\frac{R}{s}\left(\frac{2rs}{R^2}\right)=1-\frac{2r}{R}.\tag{18}
Finally, from (2) and (18),
[ABC]+[A'B'C']=\frac{2r}{R}[DEF]+\left(1-\frac{2r}{R}\right)[DEF]=[DEF].
\square
Some corollary inequalities:
  • \frac{(a^2-b^2)(a^2-c^2)}{b^2c^2}+\frac{(a^2-c^2)(b^2-c^2)}{a^2b^2}\geq\frac{(a^2-b^2)(b^2-c^2)}{a^2c^2}. (follows from (9))
  • \frac{\sin{(\alpha-\beta)}\sin{(\alpha-\gamma)}}{\sin{\gamma}\sin{\beta}}+\frac{\sin{(\alpha-\gamma)}\sin{(\beta-\gamma)}}{\sin{\alpha}\sin{\beta}}\geq\frac{\sin{(\alpha-\beta)}\sin{(\beta-\gamma)}}{\sin{\alpha}\sin{\gamma}}. (follows from (13))
  • \frac{c(a+b-c)}{ab}+\frac{b(a-b+c)}{ac}+\frac{a(-a+b+c)}{bc}\leq3. (follows from (15)) (this is IMO, 1964/2)
  • a\cos{\alpha}+b\cos{\beta}+c\cos{\gamma}\leq{s}. (follows from (16))
  • \sin{2\alpha}+\sin{2\beta}+\sin{2\gamma}\leq\frac{s}{R}. (follows from (17))
  • R\geq{2r}. (This is Euler's Inequality! It follows from (18))
Relation (1) seems like a good companion for property 4 of the Garcia-reflection triangle. See M. Dalcín, S. N. Kiss Some Properties of the García Reflection Triangles 119--126.

Update. Van Khea has generalized my problem. I have given a proof of his nice generalization which is available at Van Khea's areal problem.