Processing math: 100%

martes, 30 de marzo de 2021

Length of angle bisector: yet another application of the half-angle formulas

Let \triangle{ABC} be a triangle. Let AD be the angle bisector of \angle{BAC} in \triangle{ABC}. Let d be the length of AD. Then d is given by:

d^2=\frac{bc}{(b+c)^2}\left[(b+c)^2-a^2\right]\tag{1}

where a, b, and c are the sides opposite A, B and C respectively.

Lemma 1 (Tehebycheff). Let \triangle{ABC} be a triangle. Let AD be the angle bisector of \angle{BAC} in \triangle{ABC}. Let d be the length of AD and \angle{BAD}=\angle{CAD}=\frac{\alpha}{2}. Then d is given by:

d=\frac{2bc\cos{\frac{\alpha}{2}}}{b+c}\tag{2}

Proof. Let BD=m and CD=n. We make use of the Angle Bisector Theorem and the Law of Cosines. Indeed, by the Angle Bisector Theorem we have

\frac{b}{c}=\frac{n}{m}

which can also be written as

\frac{b^2}{c^2}=\frac{n^2}{m^2}\tag{3}

Now, by the Law of Cosines, 

n^2=b^2+d^2-2bd\cos{\frac{\alpha}{2}}\tag{4}

m^2=c^2+d^2-2cd\cos{\frac{\alpha}{2}}\tag{5}

Dividing (4) by (5) and substituting \frac{n^2}{m^2} by \frac{b^2}{c^2} we have

\frac{b^2}{c^2}=\frac{b^2+d^2-2bd\cos{\frac{\alpha}{2}}}{c^2+d^2-2cd\cos{\frac{\alpha}{2}}}

From which we get

d^2(b^2-c^2)=2bcd\cos{\frac{\alpha}{2}}(b-c)

Isolating d, factoring and simplifying we obtain (2).

\square

Another proof of Lemma 1 can be found here.

Lemma 2. Let \triangle{ABC} be a triangle and let a, b and c be the lengths of sides BC, AC and BC, respectively. Then the following identity holds

2\cos{\frac{\alpha}{2}}=\sqrt{\frac{(b+c)^2-a^2}{bc}}\tag{6}

A proof of Lemma 2 can be found here.

\square

Main proof

Combining (2) and (6) we obtain

d=\frac{bc}{(b+c)}\cdot{\sqrt{\frac{(b+c)^2-a^2}{bc}}}

Raising both sides to the power of 2 we get (1).

\square

Related material

Length of Angle Bisector

Proving the length of angle bisector

domingo, 28 de marzo de 2021

Publicaciones, reportajes y entrevistas


Este artículo inspiró la portada del CMJ, Volumen 53, 2022 - 2. Mire aquí.

En Forum Geometricorum

En MATINF

En Sangaku Journal of Mathematics


Artículos donde se citan mis trabajos

Reportajes