miércoles, 17 de julio de 2024
Showing $\frac{1}{e^{i\alpha_2}} + \frac{1}{e^{i\beta_2}} + \frac{1}{e^{i\gamma_2}} = \frac{1}{e^{i(\alpha_2+\beta_2+\gamma_2)}}$
jueves, 21 de marzo de 2024
A new integration technique via Euler-like identities
"Complexification formulas are great and it seems like this simplifies the right away."- Ninad Munshi
\displaystyle\text{(II)} \;-\>\tan\!\Bigl(\tfrac{\beta'}{2}\Bigr)\!\sqrt{\tfrac{c}{a}},\; -\>\cot\!\Bigl(\tfrac{\beta'}{2}\Bigr)\!\sqrt{\tfrac{c}{a}},& \beta' = \csc^{-1}\!\Bigl(\tfrac{b}{2\sqrt{ac}}\Bigr),\\[6pt]\displaystyle\text{(III)} \;\>e^{\,i\gamma'}\!\sqrt{\tfrac{c}{a}},\;\;-\>e^{-\,i\gamma'}\!\sqrt{\tfrac{c}{a}},& \gamma' = \cos^{-1}\!\Bigl(\tfrac{b}{2\sqrt{ac}}\Bigr),\\[6pt]\displaystyle
\text{(IV)} \;\;\frac{\tan\!\bigl(\tfrac{\delta'}{2}\bigr)\,\pm\,1}{\tan\!\bigl(\tfrac{\delta'}{2}\bigr)\,\mp\,1}\,\sqrt{\tfrac{c}{a}},
& \delta' = \sec^{-1}\!\Bigl(\tfrac{b}{2\sqrt{ac}}\Bigr),\\[6pt]
\displaystyle\text{(V)} \;\;\frac{i \,\pm\, e^{\eta'}}{\,i \,\mp\, e^{\eta'}}\,\sqrt{\tfrac{c}{a}},& \eta' = \tanh^{-1}\!\Bigl(\tfrac{b}{2\sqrt{ac}}\Bigr),\\[6pt]\displaystyle\text{(VI)} \;\;\frac{1 \,\pm\, e^{\theta'}}{\,1 \,\mp\, e^{\theta'}}\,\sqrt{\tfrac{c}{a}},
& \theta' = \coth^{-1}\!\Bigl(\tfrac{b}{2\sqrt{ac}}\Bigr).\\
\end{cases}}$$
Some Euler-like identities
Theorem 1. If complex $\alpha=\cos^{-1}(x)$ and $\beta=\csc^{-1}(x)$, where real $x\in[1, \infty)$, then the following relation holds:
\[\boxed{e^{i\alpha}=\tan\left(\frac{\beta}{2}\right)}\tag{1}\]
In the complex plane, for real $x\in[0, 1]$, we have
\[\boxed{e^{-i\alpha}=\tan\left(\frac{\beta}{2}\right)}\tag{2}\]
Proof. Consider the left-hand side of equation $(1)$. By Euler's formula and properties of inverse trigonometric functions, the exponential $e^{i\cos^{-1}(x)}$ can be rewritten as follows.
\[e^{i\cos^{-1}{(x)}}=\cos{(\cos^{-1}{(x)})}+i\sin{(\cos^{-1}{(x)})}=x+i\sqrt{1-x^2}\]
The right-hand side of $(1)$ can be written as follows.
\[\tan{\left(\frac{\csc^{-1}{(x)}}{2}\right)}=\frac{\sin{(\csc^{-1}{(x)}})}{1+\cos{(\csc^{-1}{(x)}})}=\frac{\frac{1}{x}}{1+\frac{\sqrt{x^2-1}}{x}}=x-\sqrt{x^2-1}\]
Now we just need to find the solution set for non-negative real $x$ of the following complex equation.
\[x+i\sqrt{1-x^2}=x-\sqrt{x^2-1}\tag{3}\]
Clearly, equation $(3)$ is true for $x=1$. For $x>1$, it follows that $1-x^2<0$, and therefore, the left-hand side of $(3)$ simplifies to $x-\sqrt{x^2-1}$. Consequently, equation $(3)$ is true for $x\geq1$.
For identity $(2)$, equation $(3)$ becomes
\[x-i\sqrt{1-x^2}=x-\sqrt{x^2-1}\tag{4}\]
If $0 \leq x \leq 1$, then $x^2 - 1 < 0$. Therefore, the right-hand side of equation $(4)$ can be rewritten as $x - i\sqrt{1 - x^2}$, making equation $(4)$ valid for $[0, 1]$ in the complex plane.
$\square$
The functions on both sides of identity $(1)$ are continuous for $x \geq 1$. And for identity $(2)$, continuity is guaranteed on $[0, 1]$ for complex numbers.
Remark. If complex $\alpha=\cos^{-1}(x)$ and $\beta=\csc^{-1}(x)$, where real $x\in[-1, 1]$, then the following relation holds:
\[\boxed{e^{i\alpha}=\cot\left(\frac{\beta}{2}\right)}\tag{5}\]
This is true because identity $(5)$ can be rewritten as:
\[x+i\sqrt{1-x^2}=x+\sqrt{x^2-1}\tag{6}\]
And the solution set of $(6)$ is $x \in [-1, 1]$.
Theorem 2. If complex $\alpha=\cos^{-1}(x)$ and $\gamma=\sec^{-1}(x)$, where real $x\in [1, \infty)$, then the following relation holds:
\[\boxed{e^{i\alpha}=\frac{1-\tan\left(\frac{\gamma}{2}\right) }{1+\tan\left(\frac{\gamma}{2}\right)}}\tag{7}\]In the complex plane, for $x\in [0, 1]$, we have
\[\boxed{e^{-i\alpha}=\frac{1-\tan\left(\frac{\gamma}{2}\right) }{1+\tan\left(\frac{\gamma}{2}\right)}} \tag{8}\]
Proof. By property of inverse trigonometric functions we have
\[\tan{\left(\frac{\sec^{-1}(x)}{2}\right)}=\frac{\sin{(\sec^{-1}(x))}}{1+\cos{(\sec^{-1}(x))}}=\frac{\frac{\sqrt{x^2-1}}{x}}{1+\frac{1}{x}}=\frac{\sqrt{x-1}}{\sqrt{x+1}}\]Substituting into the right-hand side of identity $(7)$, we obtain
$$\frac{1-\tan\left(\frac{\gamma}{2}\right)}{1+\tan\left(\frac{\gamma}{2}\right)}=\frac{1-\frac{\sqrt{x-1}}{\sqrt{x+1}}}{1+\frac{\sqrt{x-1}}{\sqrt{x+1}}}=x-\sqrt{x^2-1}$$
Hence, the same argument for Theorem 1 applies to Theorem 2, and both identities $(7)$ and $(8)$ are continuous on their respective intervals, with identity $(8)$ being valid in the complex plane.
$\square$
For $x\in[1,\infty)$, identity $(7)$ can be rewritten as follows:
\[\boxed{\tan{\left(\frac{\gamma}{2}\right)}=\frac{1-e^{i\alpha}}{1+e^{i\alpha}}}\tag{9}\]
And in the complex plane, for $x\in[0, 1]$, identity $(8)$ can be rewritten as follows:
\[\boxed{\tan{\left(\frac{\gamma}{2}\right)}=\frac{1-e^{-i\alpha}}{1+e^{-i\alpha}}}\tag{10}\]
Remark. For similar reasons to those given for identity $(5)$, for \(x \in [-1, 1]\), the following identity holds:
\[\boxed{\cot{\left(\frac{\gamma}{2}\right)}=\frac{1+e^{i\alpha}}{1-e^{i\alpha}}}\tag{11}\]
Applications
Example 1. Evaluate \[\int_{1}^{2}\sqrt[3]{\tan{\left(\frac12\csc^{-1}(x)\right)}} \, dx\tag{12}\]
Solution. Using identity $(1)$, integral $(12)$ becomes:
\[\int_{1}^{2} e^{\frac{1}{3}i\alpha}dx\]
Since $\alpha=\cos^{-1}(x)\implies d\alpha=-\frac{1}{\sqrt{1-x^2}}\,dx$ and $x=\cos{(\alpha)}$.
$$\begin{aligned}\int_{1}^{2} e^{\frac{1}{3}i\alpha}dx&= -\int_{1}^{2} e^{\frac{1}{3}i\alpha}\sqrt{1-\cos^2{(\alpha)}}\,d\alpha\\&=-\int_{1}^{2} e^{\frac{1}{3}i\alpha}\sin{(\alpha)}\,d\alpha\\&=-\frac{i}{2}\int_{1}^{2}(e^{-\frac23i\alpha}- e^{\frac43i\alpha})\,d\alpha\qquad (\text{Since $\sin{(\alpha)}=\frac12i(e^{-i\alpha}-e^{i\alpha}$}).)\\&=\frac34e^{-\frac23i\alpha}+\frac38e^{\frac43i\alpha}\bigg|_1^2\\&=\frac38e^{-\frac23i\alpha}(e^{2i\alpha}+2)\bigg|_1^2\\&=\frac{3\left((x-\sqrt{x^2-1})^2+2\right)}{8(x-\sqrt{x^2-1})^{2/3}}\bigg|_1^2\qquad (\text{Changing back to reals.})\\&=\frac{{3(2 + (2 - \sqrt{3})^2)}}{{8(2 - \sqrt{3})^{\frac{2}{3}}}} - \frac{9}{8}\\&\approx0.744\end{aligned}$$
Another approach involves using the simplification $\tan{\left(\frac12\csc^{-1}{(x)}\right)}=x-\sqrt{x^2-1}$. However, this method could lead to more complicated integrals, especially when evaluating rational trigonometric integrals with multiple terms involving $\tan{\left(\frac12\csc^{-1}{(x)}\right)}$ or $\tan{\left(\frac12\sec^{-1}{(x)}\right)}$ or both. Making an appropriate u-substitution might not be immediately obvious in those cases, whereas using identities $(1)$ and $(9)$ quickly turns the integral into an integral of a rational function. As an illustration, let's consider the following example.
Example 2. Evaluate
\[\int\frac{1}{\tan\left(\frac{1}{2}\csc^{-1} (x)\right) - \tan\left(\frac{1}{2}\sec^{-1}(x)\right)} \, dx\]
Solution. First, we rewrite the integral using the identity $(1)$ and $(9)$:
\[\int \frac{1}{e^{i\alpha} - \frac{1 - e^{i\alpha}}{1 + e^{i\alpha}}} \, dx=\int\frac{1+e^{i\alpha}}{e^{2i\alpha}+2e^{i\alpha}-1}\,dx\]Similar to how we proceeded in example 1, since $\alpha=\cos^{-1}(x)\implies d\alpha=-\frac{1}{\sqrt{1-x^2}}\,dx$ and $x=\cos{(\alpha)}$. Then
$$\begin{aligned}\int\frac{1+e^{i\alpha}}{e^{2i\alpha}+2e^{i\alpha}-1}\,dx &=-\int\frac{1+e^{i\alpha}}{e^{2i\alpha}+2e^{i\alpha}-1}\sqrt{1-\cos^2(\alpha)}\,d\alpha\\&=-\int\frac{1+e^{i\alpha}}{e^{2i\alpha}+2e^{i\alpha}-1}\sin(\alpha)\,d\alpha\\&=-\frac{i}{2}\int\frac{e^{-i\alpha} - e^{i\alpha} - e^{2i\alpha} + 1}{e^{2i\alpha}+2e^{i\alpha}-1}\,d\alpha\end{aligned}$$
Let $u=e^{i\alpha}\implies du=ie^{i\alpha}\,d\alpha$. Then, putting terms over a common denominator, and factoring, we have
$$-\frac{i}{2}\int\frac{e^{-i\alpha} - e^{i\alpha} - e^{2i\alpha} + 1}{e^{2i\alpha}+2e^{i\alpha}-1}\,d\alpha=\frac12\int\frac{(u - 1) (u + 1)^2}{u^2 (u^2 + 2 u - 1)}\,du$$
At this point, we can proceed by applying partial fraction decomposition.
Remark. In the MathSE forum, I asked about alternative approaches to the integral in example 2. Zacky has suggested the following substitution
$$\int \frac{1}{x-\sqrt{x^2-1}-\sqrt{\frac{x-1}{x+1}}}\,dx \overset{\frac{x-1}{x+1}=t^2}{=}4\int \frac{t}{(1+t)(1-t)^2(1-2t-t^2)}\,dt$$
However, as the reader may have noticed by the degree of the denominator, I would argue that this substitution leads us to a more complicated partial fraction decomposition. Look here and here and compare for yourself.
The following integral was asked by user SAQ on the MathSE forum.
Example 3. Evaluate
\[ \int\dfrac{\sqrt{x-1}-\sqrt{x+1}}{\sqrt{x-1}-3\sqrt{x+1}}\,dx\]
Solution. We first divide both the numerator and denominator by $\sqrt{x+1}$:
\[\int\dfrac{\sqrt{x-1}-\sqrt{x+1}}{\sqrt{x-1}-3\sqrt{x+1}}\,dx = \int\dfrac{\frac{\sqrt{x-1}}{\sqrt{x+1}}-1}{\frac{\sqrt{x-1}}{\sqrt{x+1}}-3}\,dx\]Now, we'll substitute $\frac{\sqrt{x-1}}{\sqrt{x+1}}$ with $\frac{1-e^{i\alpha}}{1+e^{i\alpha}}$ using the identity $(9)$:
\[= \int\dfrac{\frac{1-e^{i\alpha}}{1+e^{i\alpha}}-1}{\frac{1-e^{i\alpha}}{1+e^{i\alpha}}-3}\,dx\]As $\alpha = \cos^{-1}(x)$, then $x = \cos{\alpha}$ and $dx = -\sqrt{1-x^2}\,d\alpha = -\sqrt{1-\cos^2{(\alpha)}}\, d\alpha = -\sin{(\alpha)}\,d\alpha$. Now, we'll perform the substitution:
\[= -\int\dfrac{\frac{1-e^{i\alpha}}{1+e^{i\alpha}}-1}{\frac{1-e^{i\alpha}}{1+e^{i\alpha}}-3}\sin{(\alpha)}\,d\alpha\]Since $\sin(\alpha) = \frac{i}{2}(e^{-i\alpha} - e^{i\alpha})$ and simplifying, we get:
\[\frac{i}{2}\int \frac{e^{2i\alpha}-1}{2e^{i\alpha}+1} \, d\alpha\]Now, let $u = e^{i\alpha}$. Then, $du = ie^{i\alpha}\,d\alpha = iu\,d\alpha$ and $d\alpha = \frac{1}{iu}\,du$. Substituting, performing long division, and then decomposing into partial fractions,
\[ \begin{aligned}\frac12\int \frac{u^2 - 1}{u(2u + 1)} \, du&=\frac14\int 1\,du - \frac14\int \frac{u+2}{u(2u+1)}\,du\\&=\frac14\int1\,du -\frac12\int\frac{1}{u}\,du+\frac38\int\frac{1}{2u+1}\,du\\&=\frac{u}{4}-\frac{\ln{u}}{2}+\frac38\ln{|2u+1|}+C\\&=\frac{u}{4}+\frac12\ln{\left|\frac{(2u+1)^{\frac34}}{u}\right|}+C\\&=\frac{e^{i\alpha}}{4}+\frac12\ln{\left|\frac{(2e^{i\alpha}+1)^{\frac34}}{e^{i\alpha}}\right|}+C\\&=\frac{x-\sqrt{x^2-1}}{4}+\frac12\ln{\left|\frac{(2(x-\sqrt{x^2-1})+1)^{\frac34}}{x-\sqrt{x^2-1}}\right|}+C\end{aligned} \]
The following example has been taken from the popular YouTube channel, Blackpenredpen.
Example 4. Evaluate
$$\int\sqrt{\frac{1-x}{1+x}}\,dx$$
Solution. For $x\in[0, 1]$, applying identity $(10)$, we have
$$\begin{aligned}\int\sqrt{\frac{1-x}{1+x}}\,dx&=i\int\sqrt{\frac{x-1}{x+1}}\,dx\\&=-i\int\frac{1-e^{-i\alpha}}{1+e^{-i\alpha}}\sin(\alpha)\,d\alpha\\&=\frac12\int\frac{(e^{-i\alpha}-1)(e^{-i\alpha}-e^{i\alpha})}{1+e^{-i\alpha}}\,d\alpha\\&=\frac12\int((e^{-i\alpha}+e^{i\alpha})-2)\,d\alpha\\&=\frac12\int2(\cos(\alpha)-1)\,d\alpha\\&=\sin(\alpha)-\alpha+C\\&=\sqrt{1-x^2}-\cos^{-1}(x)+C\end{aligned}$$\overbrace{\frac{e^{-i\alpha} - e^{i\alpha}}{2i}}^{-\sin \alpha} a \, d\alpha \\[6pt]&\overset{t = e^{\pm i\alpha}}{=} \int f\Biggl(\frac{t^2 + 1}{2t}a - b,\ \mp \frac{t^2 - 1}{2t}a,\ \pm \frac{1-t}{1+t}\Biggr)\frac{t^2 - 1}{2t^2}a \, dt.\end{aligned}$$
&= \int f\Biggl(\overbrace{\frac{e^\theta - e^{-\theta}}{2}}^{\sinh \theta} a - b,\ \overbrace{\frac{e^\theta + e^{-\theta}}{2}}^{\cosh \theta} a\Biggr)\overbrace{\frac{e^\theta + e^{-\theta}}{2}}^{\cosh \theta} a\, d\theta \\[6pt]&\overset{s=e^\theta}{=} \int f\Biggl(\frac{s^2 - 1}{2s}a - b,\ \frac{s^2 + 1}{2s}a\Biggr)\frac{s^2 + 1}{2 s^2}a\, ds.\end{aligned}$$
Other integration techniques
miércoles, 28 de febrero de 2024
A family of trigonometric formulas for the roots of quadratic equations
This note presents alternative trigonometric formulas for finding the roots of quadratic equations where $a$, $b$, and $c$ are non-zero real numbers.
Before the era of calculators, trigonometric formulas were favored for computing quadratic roots due to their time and labor-saving benefits. However, it's not advisable nowadays to rely on these formulas over the traditional quadratic formula for root calculations. Nonetheless, the trigonometric formulas showcased in this note have hinted at certain identities that appear useful for integrating irrational functions. Thus, the sole purpose of this note is to document the origins of these identities.
Theorem 1. Let $a$, $b$, and $c$ be non-zero real numbers. For the quadratic equation $ax^2+bx+c=0$, the roots are given by:
$$x_{1}= ie^{i\alpha}\sqrt{\frac{c}{a}}\qquad \text{and}\qquad x_2=-ie^{-i\alpha}\sqrt{\frac{c}{a}},\tag{1}$$
where $\alpha=\sin^{-1}{\left(\frac{b}{2\sqrt{ac}}\right)}$.
Proof. Consider the quadratic equation $a^2+bx+c=0$. Multiplying both sides by $a$ and making the substitutions $ax=p$ and $ac=q^2$ yields
$$p^2+bp+q^2=0.$$
Let's make the substitution $\sin{\alpha} = \frac{b}{2q}$. Consequently,
$$\begin{aligned}0&=p^2+bp+q^2\\&=p^2+2qp\sin{\alpha}+q^2\\&=p^2\left(\sin^2{\frac{\alpha}{2}}+\cos^2{\frac{\alpha}{2}}\right)+4qp\sin{\frac{\alpha}{2}}\cos{\frac{\alpha}{2}}+q^2\left(\sin^2{\frac{\alpha}{2}}+\cos^2{\frac{\alpha}{2}}\right)\\&=\left(p\sin{\frac{\alpha}{2}}+q\cos{\frac{\alpha}{2}}\right)^2 + \left(p\cos{\frac{\alpha}{2}}+q\sin{\frac{\alpha}{2}}\right)^2\\&=\left(p\sin{\frac{\alpha}{2}}+q\cos{\frac{\alpha}{2}}\right)^2 -i^2\left(p\cos{\frac{\alpha}{2}}+q\sin{\frac{\alpha}{2}}\right)^2 .\end{aligned}$$
Factorizing the difference of squares and then factorizing again, one of the factor of the quadratic equation can be express as follows
$$p\left(\sin{\frac{\alpha}{2}}+i\cos{\frac{\alpha}{2}}\right)+q\left(\cos{\frac{\alpha}{2}}+i\sin{\frac{\alpha}{2}}\right).$$
Setting the factor equal to zero, undoing the substitutions $ax=p$ and $ac=q^2$ and solving for $x$, we obtain
$$\begin{aligned}x_1&=-\left(\frac{\cos{\frac{\alpha}{2}}+i\sin{\frac{\alpha}{2}}}{\sin{\frac{\alpha}{2}}+i\cos{\frac{\alpha}{2}}}\right)\sqrt{\frac{c}{a}}\\&= -(\sin{\alpha}-i\cos{\alpha})\sqrt{\frac{c}{a}}\\&=ie^{i\alpha}\sqrt{\frac{c}{a}}. \end{aligned}$$
The other factor is given by
$$p\left(\sin{\frac{\alpha}{2}}-i\cos{\frac{\alpha}{2}}\right)+q\left(\cos{\frac{\alpha}{2}}-i\sin{\frac{\alpha}{2}}\right).$$
And similarly,
$$x_2=-ie^{-i\alpha}\sqrt{\frac{c}{a}}.$$
Theorem 2. For the quadratic equation $ax^2+bx+c=0$ with non-zero real numbers $a$, $b$, and $c$, the roots are given by:
$$x_{1}=-\tan{\frac{\beta}{2}}\sqrt{\frac{c}{a}}\qquad \text{and} \qquad x_{2}=-\cot{\frac{\beta}{2}}\sqrt{\frac{c}{a}},\tag{2}$$
where $\beta=\csc^{-1}{\left(\frac{b}{2\sqrt{ac}}\right)}$.
Proof. Multiplying by $a$ the quadratic equation $ax^2+bx+c=0$ and then substituting $ax=p$ and $ac=q^2$, we have
$$p^2+bp+q^2=0.$$
Use the substitution $\csc{\beta}=\frac{b}{2q}$, then
$$\begin{aligned}0&=p^2+bp+q^2\\&=p^2+2qp\csc{\beta}+q^2\\&=\csc{\beta}\left(p^2\sin{\beta}+2qp+q^2\sin{\beta}\right)\\&=2p^2\sin{\frac{\beta}{2}}\cos{\frac{\beta}{2}}+2qp\left(\sin^2{\frac{\beta}{2}}+\cos^2{\frac{\beta}{2}}\right)+2q^2\sin{\frac{\beta}{2}}\cos{\frac{\beta}{2}}\\&=p^2\sin{\frac{\beta}{2}}\cos{\frac{\beta}{2}}+qp\sin^2{\frac{\beta}{2}}+ qp\cos^2{\frac{\beta}{2}}+q^2\sin{\frac{\beta}{2}}\cos{\frac{\beta}{2}}\\&= p\sin{\frac{\beta}{2}}\left(p\cos{\frac{\beta}{2}}+q\sin{\frac{\beta}{2}}\right)+q\cos{\frac{\beta}{2}}\left(p\cos{\frac{\beta}{2}}+q\sin{\frac{\beta}{2}}\right)\\&= \left(p\cos{\frac{\beta}{2}}+q\sin{\frac{\beta}{2}}\right)\left(p\sin{\frac{\beta}{2}}+q\cos{\frac{\beta}{2}}\right).\end{aligned}$$By setting the factors equal to zero, undoing substitutions $ax=p$ and $ac=q^2$ and solving for $x$, we obtain the desired formulas in $(2)$.
Theorem 3. Let $a$, $b$ and $c$ be non-zero real numbers. If $ax^2+bx+c=0$, then the roots are given by:
$$x_{1}= -e^{i\gamma}\sqrt{\frac{c}{a}}\qquad \text{and}\qquad x_2=-e^{-i\gamma}\sqrt{\frac{c}{a}},\tag{3}$$
where $\gamma=\cos^{-1}{\left(\frac{b}{2\sqrt{ac}}\right)}$.
Proof. Consider the quadratic equation $ax^2+bx+c=0$. Multiplying both sides by $a$ and substituting $ax=p$ and $ac=q^2$ yields
$$p^2+bp+q^2=0.$$
By making the substitution $\cos{\gamma} = \frac{b}{2q}$, it follows that
$$\begin{aligned}0&=p^2+bp+q^2\\&=p^2+2qp\cos{\gamma}+q^2\\&=p^2\left(\sin^2{\frac{\gamma}{2}}+\cos^2{\frac{\gamma}{2}}\right)+4qp\left(\cos^2{\frac{\gamma}{2}}-\sin^2{\frac{\gamma}{2}}\right)+q^2\left(\sin^2{\frac{\gamma}{2}}+\cos^2{\frac{\gamma}{2}}\right)\\&=\sin^2{\frac{\gamma}{2}} (p-q)^2+\cos^2{\frac{\gamma}{2}}(p+q)^2\\&=\sin^2{\frac{\gamma}{2}} (p-q)^2-i^2\cos^2{\frac{\gamma}{2}}(p+q)^2.\end{aligned}$$
By factoring the difference of squares first and then applying further factorization, one of the factors of the quadratic equation can be represented as follows
$$p\left(\sin{\frac{\gamma}{2}}+i\cos{\frac{\gamma}{2}}\right)+q\left(-\sin{\frac{\gamma}{2}}+i\cos{\frac{\gamma}{2}}\right).$$
Setting the factors equal to zero, undoing substitutions $ax=p$ and $ac=q^2$ and solving for $x$, we obtain
$$\begin{aligned}x_1&=\left(\frac{\sin{\frac{\gamma}{2}}-i\cos{\frac{\gamma}{2}}}{\sin{\frac{\gamma}{2}}+i\cos{\frac{\gamma}{2}}}\right)\sqrt{\frac{c}{a}}\\&= -(\cos{\gamma}+i\sin{\gamma})\sqrt{\frac{c}{a}}\\&=-e^{i\gamma}\sqrt{\frac{c}{a}}.\end{aligned}$$
The other factor is given by
$$p\left(\sin{\frac{\gamma}{2}}-i\cos{\frac{\gamma}{2}}\right)-q\left(\sin{\frac{\gamma}{2}}+i\cos{\frac{\gamma}{2}}\right).$$
And similarly,
$$x_2=-e^{-i\gamma}\sqrt{\frac{c}{a}}.$$
Theorem 4. Let $a$, $b$ and $c$ be non-zero real numbers. If $ax^2+bx+c=0$, then the roots are given by:
$$x_{1,2}=\frac{\tan{\frac{\delta}{2}\pm1}}{\tan{\frac{\delta}{2}\mp1}}\sqrt{\frac{c}{a}},\tag{4}$$
where $\delta=\sec^{-1}{\left(\frac{b}{2\sqrt{ac}}\right)}$.
Proof. Consider the quadratic equation $ax^2+bx+c=0$. Multiplying both sides by $a$ and substituting $ax=p$ and $ac=q^2$ yields
$$p^2+bp+q^2=0.$$
Use the substitution $\sec{\delta}=\frac{b}{2q}$, then
$$\begin{aligned}0&=p^2+bp+q^2\\&=p^2+2qp\sec{\delta}+q^2\\&=\sec{\delta}\left(p^2\cos{\delta}+2qp+q^2\cos{\delta}\right)\\&=\cos{\delta}(p^2+q^2)+2qp\\&= \cos{\delta}(p+q)^2-2qp\cos{\delta}+2qp\\&= \left(\cos^2{\frac{\delta}{2}}-\sin^2{\frac{\delta}{2}}\right)(p+q)^2-2qp\left(1-2\sin^2{\frac{\delta}{2}}\right)+2qp\\&= \cos^2{\frac{\delta}{2}}(p+q)^2 -\sin^2{\frac{\delta}{2}}(p+q)^2 +4qp\sin^2{\frac{\delta}{2}}\\&= \cos^2{\frac{\delta}{2}}(p+q)^2 -\sin^2{\frac{\delta}{2}}\left((p+q)^2 -4qp\right)\\&= \cos^2{\frac{\delta}{2}}(p+q)^2 -\sin^2{\frac{\delta}{2}}(p-q)^2\\&= \left(\cos{\frac{\delta}{2}}(p+q) +\sin{\frac{\delta}{2}}(p-q)\right) \left(\cos{\frac{\delta}{2}}(p+q) -\sin{\frac{\delta}{2}}(p-q)\right).\end{aligned}$$
Expanding and then factorizing again, one of the factors of the quadratic equation is given by
$$p\left(\cos{\frac{\delta}{2}}+\sin{\frac{\delta}{2}}\right)+q\left(\cos{\frac{\delta}{2}}-\sin{\frac{\delta}{2}}\right).$$
By setting the factors equal to zero, undoing substitutions $ax=p$ and $ac=q^2$ and solving for $x$, we obtain
$$\begin{aligned}x_1&=\frac{\sin{\frac{\delta}{2}}+\cos{\frac{\delta}{2}}}{\sin{\frac{\delta}{2}}-\cos{\frac{\delta}{2}}}\sqrt{\frac{c}{a}}\\&= \frac{\tan{\frac{\delta}{2}+1}}{\tan{\frac{\delta}{2}-1}}\sqrt{\frac{c}{a}}. \end{aligned}$$
The other factor is given by
$$p\left(\cos{\frac{\delta}{2}}-\sin{\frac{\delta}{2}}\right)+q\left(\cos{\frac{\delta}{2}}+\sin{\frac{\delta}{2}}\right).$$
Similarly,
$$x_2=\frac{\tan{\frac{\delta}{2}-1}}{\tan{\frac{\delta}{2}+1}}\sqrt{\frac{c}{a}}.$$
Theorem 5. Let $a$, $b$ and $c$ be non-zero real numbers. If $ax^2+bx+c=0$, then the roots are given by:
$$x_{1,2}=\frac{i\pm e^{\eta}}{i\mp e^{\eta}}\sqrt{\frac{c}{a}},\tag{5}$$
where $\eta=\tanh^{-1}{\left(\frac{b}{2\sqrt{ac}}\right)}$.
Proof. Consider the quadratic equation $ax^2+bx+c=0$. Multiplying both sides by $a$ and substituting $ax=p$ and $ac=q^2$ yields
$$p^2+bp+q^2=0.$$
Use the substitution $\tanh{\eta}=\frac{b}{2q}$, then
$$\begin{aligned}0&=p^2+bp+q^2\\&=p^2+2qp\tanh{\eta}+q^2\\&=(e^{2\eta} + 1) p^2 + 2 (e^{2\eta} - 1) p q + (e^{2\eta} + 1) q^2\\&=e^{2\eta}(p + q)^2 + (p - q)^2\\&=e^{2\eta}(p + q)^2 - i^2(p - q)^2 \\&=(e^{\eta}p + i p + e^{\eta}q - i q)(e^{\eta}p - i p + e^{\eta}q + i q)\\&= \left(p(e^{\eta} + i) + q(e^{\eta} - i)\right)\left(p(e^{\eta} - i) + q(e^{\eta} + i)\right)\end{aligned}$$
Setting the factor equal to zero, undoing the substitutions $ax=p$ and $ac=q^2$ and solving for $x$, we obtain
$$x_{1}=\frac{i- e^{\eta}}{i+e^{\eta}}\sqrt{\frac{c}{a}}.$$
And similarly,
$$x_{2}=\frac{i+ e^{\eta}}{i-e^{\eta}}\sqrt{\frac{c}{a}}.$$
Theorem 6. Let $a$, $b$ and $c$ be non-zero real numbers. If $ax^2+bx+c=0$, then the roots are given by:
$$x_{1,2}=\frac{1\pm e^{\theta}}{1\mp e^{\theta}}\sqrt{\frac{c}{a}},\tag{6}$$
where $\theta=\coth^{-1}{\left(\frac{b}{2\sqrt{ac}}\right)}$.
Proof. Consider the quadratic equation $ax^2+bx+c=0$. Multiplying both sides by $a$ and substituting $ax=p$ and $ac=q^2$ yields
$$p^2+bp+q^2=0.$$
Use the substitution $\coth{\theta}=\frac{b}{2q}$, Then, similar to how we proceeded previously,
$$\begin{aligned}0&=p^2+bp+q^2\\&=p^2+2qp\coth{\theta}+q^2\\&=(e^{2\theta} - 1) p^2 + 2 (e^{2\theta} + 1) p q + (e^{2\theta} - 1) q^2\\&=e^{2\theta}(p + q)^2 - (p - q)^2 \\&=\left( p e^{\theta} + p + q e^{\theta} - q \right) \left( p e^{\theta} - p + q e^{\theta} + q \right)\\&=\left(p(e^x + 1) + q(e^x - 1)\right)\left(p (e^x - 1) + q (e^x + 1)\right)\end{aligned}$$
Setting the factor equal to zero, undoing the substitutions $ax=p$ and $ac=q^2$ and solving for $x$, we obtain
$$x_{1}=\frac{1- e^{\theta}}{1+e^{\theta}}\sqrt{\frac{c}{a}}= -\tanh\left(\frac{1}{2} \text{coth}^{-1}(x)\right)\sqrt{\frac{c}{a}}.$$
And similarly,
$$x_{2}=\frac{1+ e^{\theta}}{1-e^{\theta}}\sqrt{\frac{c}{a}}.$$
jueves, 15 de febrero de 2024
Integrals yielding $e^{\pi}$ or $e^{-\pi}$
Lately, I've been playing a lot with integrals, and coincidentally (with a bit of algebraic manipulation), I've come across these two beauties:
$$\int_{0}^{1} \left(\frac{5}{2} \left((x - \sqrt{x^2 - 1})^{2i} + x^4\right) - 1\right) \, dx = e^{\pi},\tag{1}$$
$$\int_{0}^{1} \left( -\frac{5}{2\left( x - \sqrt{x^2 - 1}\right)^{2i}} - \frac{5x^4}{2} + 1 \right) \, dx = e^{-\pi}.\tag{2}$$
$e^{\pi}$ is known as Gelfond's constant.
I have provided these integrals as a response to a question on MathSE. The proofs are left as exercises for the reader.
jueves, 4 de enero de 2024
A generalization of Burlet's theorem to cyclic quadrilaterals
The Burlet's theorem is a result in Euclidean geometry, which can be formulated as follows:
Theorem 1. Consider triangle $ABC$ with $\angle{BCA}=\gamma$. Let $P$ be the point where the incircle touches side $AB$, and denote the lengths $AP$ and $BP$ as $m$ and $n$, respectively. Then
$$\Delta_0=mn\cot{\frac{\gamma}{2}},\tag{1}$$
A triangle $ABC$ with $AP=m$ and $BP=n$. |
where $\Delta_0$ denotes the area of $ABC$. Note that when $\gamma=\frac{\pi}{2}$, then $\Delta_0=mn$.
Proof. Let $AB=a$, $BC=b$ and $AC=c$. By Heron's formula, we have
$$\begin{aligned}\Delta_0&=\sqrt{s(s-a)(s-b)(s-c)}\\&=\sqrt{s(s-a)(s-b)(s-c)}\color{red}{\sqrt{\frac{(s-b)(s-c)}{(s-b)(s-c)}}}\\&=(s-b)(s-c)\sqrt{\frac{s(s-a)}{(s-b)(s-c)}}.\end{aligned}$$However, using half-angle formulas for a triangle, we can express $\cot{\frac{\gamma}{2}}$ as $\sqrt{\frac{s(s-a)}{(s-b)(s-c)}}$, where $m=(s-b)$ and $n=(s-c)$. This establishes the relationship mentioned in $(1)$.
$\square$
Theorem 2 (Generalization). Consider a cyclic quadrilateral $ABCD$ with side lengths $AB=a$, $BC=b$, $CD=c$, and $DA=d$. Additionally, let $\angle DAB = \alpha$. In this context, the following relation is valid:
$$\Delta_1=(s-a)(s-d)\cot{\frac{\alpha}{2}},\tag{2}$$
A cyclic quadrilateral $ABCD$. |
where $\Delta_1$ denotes the area of $ABCD$.
Proof. Similar to how we proceeded in theorem 1, using the Brahmagupta's formula, we have
$$\begin{aligned}\Delta_1&=\sqrt{(s-a)(s-b)(s-c)(s-d)}\\&=\sqrt{(s-a)(s-b)(s-c)(s-d)}\color{red}{\sqrt{\frac{(s-a)(s-d)}{(s-a)(s-d)}}}\\&=(s-a)(s-d)\sqrt{\frac{(s-b)(s-c)}{(s-a)(s-d)}}.\end{aligned}$$
Now, invoking the half-angle formulas for cyclic quadrilaterals, we have that $\cot{\frac{\alpha}{2}}=\sqrt{\frac{(s-b)(s-c)}{(s-a)(s-d)}}$, from which the relation $(2)$ is deduced.
$\square$
Let $\angle{BCD}=\gamma$ and assume that $d=0$. We have that $\alpha=\pi-\gamma$, so substituting in $(2)$,When $d=0$, by the alternate segment theorem, $\alpha=\pi-\gamma$. |
$$\begin{aligned}\Delta_1&=(s-a)(s-0)\cot{\left(\frac{\pi-\gamma}{2}\right)}\\&=s(s-a)\tan{\frac{\gamma}{2}}\\&=s(s-a)\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}\color{red}{\sqrt{\frac{(s-b)(s-c)}{(s-b)(s-c)}}}\\&=(s-b)(s-c)\sqrt{\frac{s(s-a)}{(s-b)(s-c)}}\\&=(s-b)(s-c)\cot{\frac{\gamma}{2}},\end{aligned}$$