$$m^2=\frac{(ab+cd)(ac+bd)}{ad+bc}\tag{1}$$
$$n^2=\frac{(ac+bd)(ad+bc)}{ab+cd}\tag{2}.$$
Proof. By the Law of Cosines,
$$\begin{align*}m^2&=a^2+d^2-2ad\cos{A}\\&=a^2+d^2-2ad(2\cos^2{\frac{A}{2}}-1)\\&=(a+d)^2-4ad\cos^2{\frac{A}{2}}\end{align*}$$
Substituting from the half-angle formula (see formula $(5)$ in this page) we get
$$\begin{align*}m^2&=(a+d)^2-\frac{ad[(a+d)^2-(b-c)^2]}{ad+bc}\\&=\frac{bc(a+d)^2+ad(b-c)^2}{ad+bc}\\&=\frac{a^2bc+bcd^2+ab^2d+ac^2d}{ad+bc}\\&=\frac{(ab+cd)(ac+bd)}{ad+bc}.\end{align*}$$
$\square$
Similarly we can get $(2)$.
Related material