Processing math: 100%
GeoDom
miércoles, 17 de julio de 2024
Showing
\frac{1}{e^{i\alpha_2}} + \frac{1}{e^{i\beta_2}} + \frac{1}{e^{i\gamma_2}} = \frac{1}{e^{i(\alpha_2+\beta_2+\gamma_2)}}
›
Let
x
be any of
\alpha_1
,
\beta_1
, or
\gamma_1
and suppose
\alpha_1+\beta_1+\gamma_1=\pi
. Then $$e^{i(\alpha_2+\beta_2)}+e^{i(\alp...
jueves, 21 de marzo de 2024
A new integration technique via Euler-like identities
›
"Complexification formulas are great and it seems like this simplifies the right away." - Ninad Munshi Introduction While investig...
miércoles, 28 de febrero de 2024
A family of trigonometric formulas for the roots of quadratic equations
›
This note presents alternative trigonometric formulas for finding the roots of quadratic equations where
a
,
b
, and
c
are non-zero re...
jueves, 15 de febrero de 2024
Integrals yielding
e^{\pi}
or
e^{-\pi}
›
Lately, I've been playing a lot with integrals , and coincidentally (with a bit of algebraic manipulation), I've come across these ...
jueves, 4 de enero de 2024
A generalization of Burlet's theorem to cyclic quadrilaterals
›
The Burlet's theorem is a result in Euclidean geometry, which can be formulated as follows: Theorem 1 . Consider triangle
ABC
with $...
martes, 19 de diciembre de 2023
The half-angle formulas are central!
›
As the title suggests, the half-angle formulas are central . Even more central than the law of cosines, which is nothing more than the half...
martes, 22 de agosto de 2023
“Matemáticos” Dominicanos que Publican en Revistas de Dudosa Reputación
›
En un escenario matemático que desafía toda lógica y sentido común, un grupo de investigadores dominicanos, respaldados por el Fondo Nacion...
1 comentario:
›
Inicio
Ver versión web