Processing math: 0%

viernes, 24 de abril de 2020

Selectivo Argentina Cono Sur - Problema 3

Sea \triangle{ABC}  un triángulo e I el punto de intersección de sus bisectrices. Sea \tau la circunferencia con centro I que es tangente a los tres lados del triángulo y sean D en BC y E en AC los puntos de tangencia de \tau con BC y AC. Sean M y N los puntos medios de BC y AB, respectivamente. Demostrar que AI, DE y MN concurren en un punto común. 


Demostración. Supongamos que ED y MN se cortan en P. Si llamamos X a la intersección de EF con MN, donde F es el punto de contacto de \tau con AB, sabemos que BXFD es cíclico y NX=NB (ver demostración aquí). Claramente \triangle{FMX}\sim{\triangle{AEF}} con \angle{FXP}=\angle{AFE}=\angle{FDP}, implicando que P yace sobre (BXFD). Al ser \triangle{NXB} isósceles, \angle{PFB}=\angle{PXB}=\frac{180^\circ-\angle{ACB}}{2}. Dicho esto, no es difícil darse cuenta que FP=EP, significando que PFAE es un deltoide y, como consecuencia, AP es la bisectriz de \angle{FAE}. Esto demuestra que MN, ED y AI son concurrentes y hemos terminado.

jueves, 23 de abril de 2020

Un lema sobre segmentos congruentes

Considera un triángulo \triangle{ABC}. Los puntos E y F son los puntos donde el incírculo toca los lados AB y AC, respectivamente. M y N son los puntos medios de los lados AB y BC, respectivamente. Llamemos P es la intersección de EF y MN.

Lema.
a) BN=CN=NP.
b) CP es la bisectriz de \angle{ACB}.
c) BPEID es cíclico (I es el incentro de \triangle{ABC}).



Demostración a). Denotemos con s el semiperímetro de \triangle{ABC}. Entonces tenemos

s=AE+BC
\frac{AB}{2}+\frac{BC}{2}+\frac{AC}{2}=AE+BC
\frac{AB}{2}+\frac{AC}{2}-AE=\frac{BC}{2}

Pero \frac{AB}{2}-AE=EM y \frac{AC}{2}=MN. Además, es fácil notar que \triangle{AEF} y \triangle{EMP} son triángulos isósceles semejantes con EM=MP, de modo que  \frac{AB}{2}+\frac{AC}{2}-AE=\frac{BC}{2} puede reescribirse como MP+MN=\frac{BC}{2} y hemos terminado.

Demostración b)Note que AC es paralela con MN y \triangle{PNC} es isósceles, de donde resulta que  \angle{NCP}=\angle{NPC}=\frac{180^\circ-(180-\angle{ACB})}{2}=\frac{\angle{ACB}}{2}

Demostración c). El cuadrilátero BEID es cíclico puesto que es un deltoide recto. Note que como consecuencia de a) y b) \angle{EPI}=\angle{EPM}-\frac{\angle{ACB}}{2}=\frac{180^\circ-\angle{BAC}}{2}-\frac{\angle{ACB}}{2}=\frac{\angle{ABC}}{2}. Pero \angle{EBI}=\frac{\angle{ABC}}{2}, por lo tanto, BPEID es cíclico.

sábado, 18 de abril de 2020

Another Tran Viet Hung's problem




Lemma 1. Let CD cuts circle (D, DB) in G. Then, BGIC is cyclic.

Proof. Notice that \angle{BDC}=\angle{BAC}, so 

\angle{GBI}=\frac{\angle{ABC}}{2}-(\angle{DBG}-\angle{DBA})= 
\angle{GBI}=\frac{\angle{ABC}}{2}-(90^\circ-\frac{\angle{BAC}}{2})+\angle{DCA}.

Replacing 90^\circ by \frac{\angle{ABC}}{2}+\frac{\angle{BAC}}{2}+\frac{\angle{BCA}}{2} and simplifying, we get \angle{GBI}=\angle{DCA}-\frac{\angle{BCA}}{2}. But \angle{DCA}=\angle{BCA}-\angle{BCD}, thus, \angle{GBI}=\frac{\angle{BCA}}{2}-\angle{BCD}. Moreover, \angle{DCI}=\angle{GCI}=\frac{\angle{BCA}}{2}-\angle{BCD}, hence,\angle{GBI}=\angle{GCI} implying BGIC is cyclic.


\square

Lemma 2. IE=IG.

Proof. Notice that \angle{BEG}=\frac{\angle{BDG}}{2}=\frac{\angle{BAC}}{2}=\angle{BAI} which means that EG\parallel{AI} implying that ID\perp{EG} and as DI passes through the center of circle (D, DB) we deduce DI is the perpendicular bisector of EG meaning IE=IG.

\square

Back to our main problem.

\angle{IEG}=\angle{IGE}=360^\circ-\angle{EGF}-\angle{DGB}-\angle{BGC}-\angle{CGI}.

Combining lemmas 1 and 2 we get  \angle{EGF}=\frac{\angle{BAC}}{2}+\angle{DCA}; \angle{DGB}=90^\circ-\frac{\angle{BAC}}{2}; \angle{BGC}=\angle{BIC}=180^\circ-\frac{\angle{ABC}}{2}-\frac{\angle{BCA}}{2}; \angle{CGI}=\frac{\angle{ABC}}{2}.

Replacing and simplifying we get \angle{IEG}=90^\circ+\angle{BCD}-\frac{\angle{BCA}}{2}. Finally, \angle{FEI}+\angle{FCI}=180^\circ+\angle{BCD}-\frac{\angle{BCA}}{2}+\frac{\angle{BCA}}{2}-\angle{BCD}=180^\circ and we are done.


domingo, 12 de abril de 2020

Solution to problem 4975 in Romantics of Geometry

This problem was proposed by Tran Viet Hung (Vietnam). Here is my proof. 



Proof for a). 


Perform an inversion around circle, w, centred at A with radius AE=ADThe incircle is fixed since it is orthogonal with w. Touch points E and D are also fixed since they are on the circumference of w. The inverted image of I is the intersection of AI with ED, denoted I'. B and C are transformed into B' and C' on lines AB and AC, respectively. The circumcircle (ABC) is sent to the line passing through B', C'. Line BC is sent to the circle (AB'C') and is tangent to the incircle at P', the inverted image of P. The point M is sent to M', the intersection of AI and B'C'. The line MP is sent to the circle passing through A, M' and P'. Finally, the inverted image of Q is the second intersection of line B'M' with (AM'P') (See the inverted diagram above).

As angles are preserved under inversion, we want to show that Q' lies on E'D'taking advantage of the fact that \angle{AI'E'}=90^\circ. Let's supose that E'D' cuts B'C' in Q''. It suffices to show AM'P'Q'' is cyclic. Indeed, if N is the intersection of AI' with arc B'C',  then, N is the midpoint of arc B'C', and it is known that Q'', P' and N are collinear (notice that the incircle turns out to be the A-mixtilinear excircle of \triangle{AB'C'}). A simple angle chase shows that \angle{M'AP'}=\angle{M'Q''P'}implying AM'P'Q'' is cyclic and that Q''=Q', as desired.

\square


Proof for b).

Under the same inversion we perfom in part a), the A-mixtilinear excircle is sent to the incircle of \triangle{AB'C'} which touches B'C' in X'', the inverted image of X'. The intersection of AI with BC is sent to N, the same midpoint of arc B'C' (not containing A) we described in part a). It suffices to show that Q'NX''A is cyclic. Indeed, we proved already that Q' lies on B'C', so if we prove that \angle{X''Q'N} = \angle{X''AN} we are done. But it is well known that AX'', AP' are isogonal and Q', P' and N are collinear, so \angle{X''AN} = \angle{M'AP'} = \angle{M'Q'P'} = \angle{X''Q'N}, implying that Q'NX''A is cyclic, as desired.

\square

sábado, 11 de abril de 2020

Collinearity in a Mixtilinear Configuration

Consider a triangle \triangle{ABC}, its Incircle, \psi, and its B-mixtilinear incircle, \omega. Let T be the point of tangency of \psi and \omega. Let K and L be the points of tangency of \omega with the sides AB and BC, respectively. Call D the point of tangency of \psi with AC. Call E the  second intersection (further to B) of \psi with BT. Call F the second intersection of the circumcircle of \triangle{EDI} with BT. Prove that K, F and I are collinear. 



Proof. \angle{ATI}=\angle{CTI} and \angle{ATB}=\angle{CTD} (well-known). We have \angle{BTD}=\angle{ATC}-\angle{ATB}-\angle{CTD}. Notice that \angle{ATB}=\angle{CTD}=\angle{ACB} and \angle{ATC}=180^\circ-\angle{ABC}, then, \angle{BTD}=\angle{BAC}-\angle{ACB}. Moreover, TI is an angle bisector of \angle{BTD}, therefore, D is the reflection of E around TI, which means TE=TD. Said this, and having in mind that EDIF is cyclic, we find \angle{DIF}=\frac{\angle{ABC}}{2}+\angle{ACB}.

On the other hand, K, I and L are collinear (well-known), consequently, \angle{AKL}=\angle{AKI}=90^\circ+\frac{\angle{ABC}}{2}. Finally, some angle chase in quadrilateral AKID give us \angle{DIK}= \frac{\angle{ABC}}{2}+\angle{ACB}. As \angle{DIF}=\angle{DIK}, we are done.

martes, 7 de abril de 2020

An appearance of harmonic division

Consider a semicircle (AB) and a circle, w, tangent internally at T. Let N be the point of tangency of w and the diameter, AB. If O is the center of (AB) and C is the midpoint of arc AB, let F be the intersection of a parallel line to CT passing through D with CO. Denote P the intersection of CN with DFProve that DP=FP(Carlos Hugo Olivera Diaz)


Proof. It is a well-known fact that O, D and T are collinear, so we have that \triangle{OFD}\sim{\triangle{OCT}}, as a consequence, DT=CF=DN=r, where r is the radius of w. Since CO\parallel{DN}, \angle{FCP}=\angle{DNP}. Also, \angle{FPC}=\angle{NPD}, hence \triangle{CFP}\cong{\triangle{DNP}} and the proof is complete. 

\square

Remark 1. If CN meet OT at H, then, (O, D; H, T)=-1.

Proof 1. If we project from C onto the line OT, we have -1=(F, D; P, P_\infty)=(O, D; H, T)

\square

Proof 2. Let N' be the second intersection of ND with w. Then, from the first lemma in the Archimedes's Book of Lemmas, we know that C, N' and T are collinear. As D is the midpoint of NN' and NN' is parallel to CO, if we project from C onto the line OT, -1=(N', N; D, P_{\infty})=(T, H; D, O).

\square

Notice that the original problem can also be proven using harmonic division. Indeed, projecting from C onto the line DF, we have -1=(N', N; D, P_{\infty})=(P_{\infty}, P, D, F)which means P is the midpoint of DF.



External version.  Here D' is the reflection of D around N. Let H be the intersection of OD with CD', then, (O, T; H, D)=-1.


Proof. As mentioned, it is known that O, T and D are collinear. Also, because of the external version of Archimedes's lemma, C, T and N are collinear. As CO\parallel{DD'}, if we project from C onto the line OD, -1=(D, D'; N, P_{\infty})=(D, H; T, O).

\square

Remark 2. In this case, let H be the intersection of CT with AB. Then, (A, B; N, H)=-1. (See problems 2 and 3 for applications)


Proof. From Archimedes's lemma we know that C', N and T are collinear. The quadrilateral ACBC' is harmonic, a square specifically, so if we project from T onto the line AB we have -1=(A, B; C', C)=(A, B; N, H)

\square

In general, if N and H are the intersections of C'T with AB and CT with AB, respectively, AB could be any chord perpendicular to CC' and T be any point on the circle (ACBC') and the result still holds. This is because ACBC' is always a harmonic quadrilateral (e.g. a square or a kite).

Applications.

Problem 1. Let w and v, be two circles tangent internally at T. Let N be the point of tangency of the smaller circle, v, and the diameter of w, AB. If C is the midpoint of arc AB (above AB), let's C' be its antipode. Also, let N' be the antipode of N. If O is the center of circle w, prove that CN, C'N' and OT are concurrent at P.


Proof. Let's supose CN meets OT at P and let D be the center of v. From the remark discussed previously, we know that (O, D; P, T)=-1. We also know from Archimedes's lemma that C, N' and T are collinear. So if we project from N' onto the line CO we have that T goes to C; O remains the same and D goes to the point at infinity, hence, N', P and  C' must be collinear and the proof is complete.

The following is problem 310 in Gogeometry. I have provided two more proofs here (in Spanish).


Problem 2. Let w and v, be two circles tangent internally at T. Let N be the point of tangency of the smaller circle, v, and the diameter of w, AB. Prove that \angle{ATN}=45^\circ.




Proof. Let C be the midpoint of arc AB (containing T) and let C' be its antipode. Because of Archimedes's lemma C', N and T are collinear. If H is the intersection of CT with AB, from remark 2 we know that (A, B; N, H)=-1. Also, notice that \angle{CTC'}=\angle{NTH}=90^\circ, since CC' is a diameter. Therefore, NT is an angle bisector of \angle{ATB}=90^\circ and the proof is complete.


Problem 3. Let D be the center of a circle inscribed in a semicircle (AB). Let T and N be the points where the circle touches (AB) and AB, respectively. Call C the midpoint of arc AB. Prove that AC, ND and BT are concurrent at a common point. 


Proof. Let H be the intersection of CT and AB and P the intersection of AC and BTFrom the remark 2 we know that (A,B;N,H)=-1. This implies that AT, BC and NP are concurrent at a common point. Since \angle{ACB}=\angle{BTA}=90^\circthe segment NP must be an altitude of \triangle{ABP}As \angle{BND}=\angle{BNP}=90^\circ, we conclude that AC, ND and BT are concurrent at a common point and the proof is complete. 


Related material:

sábado, 4 de abril de 2020

Lozada's cyclologic triangles

Let ABC be a triangle, P a point, A'B'C' the antipedal triangle of P and A'', B'', C'' the reflections of P in A, B, C, respectively. Then, for any P distinct from the Incenter of ABC, A'B'C' and A''B''C'' are cyclologic. (César E. Lozada)



Proof. Notice that as B'' and A'' are reflections around A'C' and B'C', respectively, \angle{BC'P}=\angle{BC'B''} and \angle{AC'P}=\angle{AC'A''}. Since \angle{BC'P}+\angle{AC'P}=\angle{A'C'B'} it follows that \angle{B''C'A''}=2\angle{A'C'B'}. Analogously, \angle{B''A'C''}=2\angle{C'A'B'} and \angle{C''B'A''}=2\angle{A'B'C'}

Supose Q is the second intersection of circles (A'C''B'') and (B'A''C''), then, \angle{A''QB''}=\angle{C''QB''}-\angle{C''QA''}. But \angle{C''QB''}=\angle{C''A'B''}=2\angle{B'A'C'} and \angle{C''QA''}=180^\circ-2\angle{A'B'C'}, so \angle{A''QB''}=2\angle{B'A'C'}+2\angle{A'B'C'}-180^\circ. Now,  \angle{A''QB''}+\angle{B''C'A''}=2\angle{B'A'C'}+2\angle{A'B'C'}-180^\circ+2\angle{A'C'B'}=180^\circ. Which means that QB''C'A'' is cyclic. 

\square

The concurrency of circles (A'B'C''), (A'C'B'') and (B'C'A'') is guaranteed by the fact that the cyclologic theorem is symmetric. 

Remark: Q lies on the circumcircle of A'B'C'.

Proof: The facts that ABC is homothetic with A''B''C'' and A'CPB and B'CPA are cyclic quadrilaterals lead us to infer that
\angle{A'QB''}=\angle{A'C''B''}=(90^\circ-\angle{CA'P})-\angle{BA'P}=90^\circ-\angle{B'A'C'}. 
Similarly,
\angle{A''QB'}=\angle{A''C''B'}=(90^\circ-\angle{CB'P})-\angle{AB'P}=90^\circ-\angle{A'B'C'}.
We already know that \angle{A''QB''}=2\angle{B'A'C'}+2\angle{A'B'C'}-180^\circ. As \angle{A'QB'}=\angle{A'QB''}+\angle{B''QA''}+\angle{A''QB'}, it follows that
\angle{A'QB'}+\angle{A'C'B'}=\angle{B'A'C'}+\angle{A'B'C'}+\angle{A'C'B'}=180^\circ.

\square 

Related material: Cyclologic triangles!

miércoles, 1 de abril de 2020

Cyclologic triangles!

Two triangles A_1B_1C_1 and A_2B_2C_2 are Cyclologic if the circles (A_1B_2C_2), (B_1A_2C_2), and (C_1A_2B_2) are concurrent in a common point. The point of concurrence is known as the Cyclologic center of A_1B_1C_1 with respect to A_2B_2C_2If this is the case, then the circles (A_2B_1C_1), (B_2A_1C_1), (C_2A_1B_1) also will be concurrent. The point of concurrence is known as the Cyclologic center of A_2B_2C_2 with respect to A_1B_1C_1.

Proposition. Let ABC be a triangle. Consider two points, P and Q, in the plane of ABC. Let P_aP_bP_c and Q_aQ_bQ_c be the pedal triangles of P and Q, respectively.  Let X, Y and Z be the orthogonal projections of P onto the sides Q_aQ_b, Q_bQ_c and Q_aQ_c, respectively. Then, P_aP_bP_c and XYZ are cyclologic triangles. In other words, the circles (P_bP_cY), (P_aP_cZ) and (P_aP_bX) are concurrent at a point, and so are circles (P_cYZ), (P_bXY) and (P_aXZ).



Proof. Supose G is the second intersection of circles (P_bP_cY) and (P_cZP_a), then, 

\angle{P_aGP_b}+\angle{P_bXP_a}=\angle{P_cGP_a}-\angle{P_cGP_b}+\angle{P_bXP}+\angle{PXP_a}.

Notice that \angle{P_cGP_a}=\angle{P_cZP_a} and \angle{P_cGP_b}=\angle{P_cYP}+\angle{PYP_b}. By supplementary angles it is easy to realize that PP_cQ_cZY, PZP_aQ_aX and PYXQ_bP_b are cyclic pentagons. So, \angle{P_cZP}=\angle{P_cYP}\angle{PYP_b}=\angle{P_bXP} and \angle{P_aZQ_a}=\angle{Q_aXP_a}. This allows us to re-write the above expression as follows

\angle{P_cZP_a}-\angle{P_cYP_b}+\angle{P_bXP_a}=
\angle{P_cZP}+90^\circ+\angle{P_aZQ_a}-\angle{P_cYP}-\angle{PYP_b}+\angle{P_bXP}+90^\circ-\angle{P_aZQ_a}=180^\circ.

Which means that GP_aXP_b is cyclic, so done.


The cyclologic center of XYZ with respect to P_aP_bP_c is clearly P.

Remark: the triangle Q_aQ_bQ_c can be arbitrary inscribed in ABC. The fact that Q_aQ_bQ_c is a pedal triangle was never used in the proof.

Some more properties of this configuration can be found in the ETC: Cyclologic centers: X(37743) - X(37744).

See also Lozada's cyclologic triangles.