The following theorem is a property of the circumcircle mid-arc triangle which appears to be unknown.
We will be using standard notation: $\lvert{BC}\rvert=a$, $\lvert{AC}\rvert=b$, $\lvert{AB}\rvert=c$; $\angle{BAC}=\alpha$, $\angle{ABC}=\beta$ and $\angle{BCA}=\gamma$; $s$ for the semiperimeter; $R$ for the circumradius and $r$ for the inradius. If $X$, $Y$ and $Z$ are the vertices of a triangle, we denote its area $[XYZ]$.
Problem. Let $ABC$ be a triangle and $I$ its Incenter. Denote $\omega$ the circumcircle of $ABC$. Let $AI$ intersect $\omega$ again at $D$. Define $E$ and $F$ cyclically. Let $U$, $V$ and $W$ be the midpoints of $DE$, $EF$ and $FD$, respectively. Let $A'$ be the reflection of $A$ with respect to $V$. Define $B'$ and $C'$ cyclically (see figure 1). Then
$$[DEF]=[ABC]+[A'B'C'].\tag{1}$$
|
Figure 1 |
Lemma 1. If $ABC$ is a triangle and $DEF$ is its circumcircle mid-arc triangle, then
$$\boxed{\frac{[ABC]}{[DEF]}=\frac{2r}{R}.}\tag{2}$$
Proof. By property of inscribed angles, $\angle{BAF}=\angle{ACF}=\frac12\gamma$ and $\angle{CAE}=\frac12\beta$. It follows that
$$\begin{aligned}&\angle{EAF}=\alpha+\frac12\beta+\frac12\gamma\\&=\pi-\beta-\gamma+\frac12\beta+\frac12\gamma\\&=\pi-\frac12(\beta+\gamma).\end{aligned}$$By the law of sines,
$$\frac{EF}{\sin{(\pi-\frac12(\beta+\gamma))}}=\frac{EF}{\sin{\frac12(\beta+\gamma)}}=\frac{AF}{\sin{\frac12\gamma}}.\tag{3}$$
Since $\angle{AFC}=\beta$ and, again, by the law of sines,
$$\frac{AF}{\sin{\frac12\gamma}}=\frac{b}{\sin{\beta}}.\tag{4}$$
From $(3)$ and $(4)$ we get
$$EF=\frac{b\sin{\frac12(\beta+\gamma)}}{\sin{\beta}}=2R\sin{\frac12(\pi-\alpha)}=2R\cos{\frac12\alpha}.\tag{5}$$
Analogously, we can find that
$$DF=2R\cos{\frac12\beta}\qquad ED=2R\cos{\frac12\gamma}.\tag{6}$$
Note that $\angle{DFC}=\frac12\alpha$ and $\angle{EFC}=\frac12\beta$, so $\angle{DFE}=\frac12(\alpha+\beta)$. Then the area of $DEF$ is given by
$$[DEF]=\frac{EF\cdot{DF}\sin{\frac12(\alpha+\beta)}}{2}=2R^2\cos{\frac12\alpha}\cos{\frac12\beta}\cos{\frac12\gamma}.\tag{7}$$
Elsewhere we have proved that $s=4R\cos{\frac12\alpha}\cos{\frac12\beta}\cos{\frac12\gamma}$ (for a proof, see section 3, c), here). As the area of $ABC$ can also be written as $[ABC]=rs$, we can rewrite it like this$$[ABC]=4Rr\cos{\frac12\alpha}\cos{\frac12\beta}\cos{\frac12\gamma}.\tag{8}$$
Dividing $(8)$ by $(7)$ we get
$$\frac{[ABC]}{[DEF]}=\frac{2r}{R}.$$
$\square$
Lemma 2. Let $ABC$ be an triangle and $H$ its orthocenter. Let $l_a$, $l_b$ and $l_c$ be the perpendicular bisectors of sides $BC$, $AC$ and $AB$, respectively. Denote $H_1$, $H_2$ and $H_3$ the reflections of $H$ around $l_a$, $l_b$ and $l_c$, respectively. Then
$$\boxed{\frac{[H_1H_2H_3]}{[ABC]}=\frac{(a^2-b^2)(a^2-c^2)}{b^2c^2}+\frac{(a^2-c^2)(b^2-c^2)}{a^2b^2}-\frac{(a^2-b^2)(b^2-c^2)}{a^2c^2}.}\tag{9}$$
Proof. From figure 2, note that
$$HH_3=2(\frac{c}{2}-AC_1).\tag{10}$$
|
Figure 2 |
Let $CH$ intersect $AB$ in $C_1$. Applying the law of sines in the triangle $ACC_1$, we have that
$$b=\frac{AC_1}{\sin{(\frac{\pi}{2}-\alpha)}}=\frac{AC_1}{\cos{\alpha}}.$$
So, $AC_1=b\cos{\alpha}$. Substituting in $(10)$ and then substituting from the law of cosines $\cos{\alpha}=\frac{b^2+c^2-a^2}{2bc}$ we have
$$HH_3=2(\frac{c}{2}-b\cos{\alpha})=c-2b\cos{\alpha}=\frac{a^2-b^2}{c}.$$
Similarly, we get that $HH_1=\frac{b^2-c^2}{a}$ and $HH_2=\frac{a^2-c^2}{b}$. Now, note that
$$[H_1H_2H_3]=[HH_2H_3]+[HH_1H_2]-[HH_1H_3].\tag{11}$$
As $HH_3$ and $HH_2$ are perpendicular to $l_c$ and $l_a$, respectively, then $\angle{H_2HH_3}=\alpha$ and similarly $\angle{H_2HH1}=\gamma$. Thus, equation $(11)$ can be written as follows
$$[H_1H_2H_3]=\frac{(a^2-b^2)(a^2-c^2)\sin{\alpha}}{2bc}+\frac{(a^2-c^2)(b^2-c^2)\sin{\gamma}}{2ab}-\frac{(a^2-b^2)(b^2-c^2)\sin{(\alpha+\gamma)}}{2ac}.\tag{12}$$
Dividing both sides of equation $(12)$ by $[ABC]=\frac12bc\sin{\alpha}=\frac12ab\sin{\gamma}=\frac12ac\sin{\beta}$ and taking into account that $\sin{(\alpha+\gamma)}=\sin{(\pi-\beta)}=\sin{\beta}$.
$$\frac{[H_1H_2H_3]}{[ABC]}=\frac{(a^2-b^2)(a^2-c^2)}{b^2c^2}+\frac{(a^2-c^2)(b^2-c^2)}{a^2b^2}-\frac{(a^2-b^2)(b^2-c^2)}{a^2c^2}.$$
$\square$
Note that the terms on the right hand side of the equation $(9)$ are the products of the
Mollweide's formulas. Substituting from Mollweide's formulas and applying the identity of sine of double angle, we can write the equation $(9)$ as follows
$$\boxed{\frac{[H_1H_2H_3]}{[ABC]}=\frac{\sin{(\alpha-\beta)}\sin{(\alpha-\gamma)}}{\sin{\gamma}\sin{\beta}}+\frac{\sin{(\alpha-\gamma)}\sin{(\beta-\gamma)}}{\sin{\alpha}\sin{\beta}}-\frac{\sin{(\alpha-\beta)}\sin{(\beta-\gamma)}}{\sin{\alpha}\sin{\gamma}}.}\tag{13}$$
Back to the main problem
It is well-known that the orthocenter of the circumcircle mid-arc triangle is the incenter of the reference triangle. So $IB\perp{FD}$. Moreover, because of properties of inscribed angles, $$\angle{IDF}=\angle{FCB}=\angle{FDB}=\frac12\gamma$$
and $$\angle{IFD}=\angle{CAD}=\angle{DAB}=\angle{DFB}=\frac12\alpha.$$
Hence, by $ASA$, $DFI\cong{DFB}$. As a consequence, $I$ is the reflection of $B$ around $FD$. As $B'$ is the reflection of $B$ around $W$, it follows that the perpendicular bisector of $FD$ must also bisect $IB'$, meaning that $B'$ is the reflection of the orthocenter of $DEF$, $I$, around the perpendicular bisector of $DF$. Similarly, we conclude that $A'$ and $C'$ are the reflections of $I$ around the perpendicular bisectors of $EF$ and $DE$, respectively. Now our goal will be to show that $\frac{[A'B'C']}{[DEF]}=1-\frac{2r}{R}$. Note that $\angle{EFD}=\frac12(\alpha+\beta)$, $\angle{EDF}=\frac12(\beta+\gamma)$ and $\angle{DEF}=\frac12(\alpha+\gamma)$. Applying formula $(13)$ to triangles $A'B'C'$ and $DEF$ and substituting angles we have
$$\frac{[A'B'C']}{[DEF]}=\frac{\sin{\frac12(\alpha-\gamma)}\sin{\frac12(\beta-\gamma)}}{\cos{\frac12\beta}\cos{\frac12\alpha}}+\frac{\sin{\frac12(\beta-\gamma)}\sin{\frac12(\beta-\alpha)}}{\cos{\frac12\gamma}\cos{\frac12\alpha}}-\frac{\sin{\frac12(\alpha-\gamma)}\sin{\frac12(\beta-\alpha)}}{\cos{\frac12\gamma}\cos{\frac12\beta}}. \tag{14}$$
Note that the right hand side of the equation $(14)$ are, again, products of the
Mollweide's formulas. Thus, we have
$$\begin{aligned}\frac{[A'B'C']}{[DEF]}&=\frac{(a-c)(b-c)}{ab}+\frac{(b-c)(b-a)}{ac}-\frac{(a-c)(b-a)}{bc}\\&=1-\frac{c(a+b-c)}{ab}+1-\frac{b(a-b+c)}{ac}+1-\frac{a(-a+b+c)}{bc}.\end{aligned}\tag{15}$$
$$\begin{aligned}\frac{[A'B'C']}{[DEF]}&=3-\frac{2a\cos^2{\frac12\alpha}+2b\cos^2{\frac12\beta}+2c\cos^2{\frac12\gamma}}{s}\\&=1-\frac{a\cos{\alpha}+b\cos{\beta}+c\cos{\gamma}}{s}.\end{aligned}\tag{16}$$
Substituting from the law of sines, factorizing and applying double-angle identity for sine,
$$\begin{aligned}\frac{[A'B'C']}{[DEF]}&=1-\frac{R(\sin{2\alpha}+\sin{2\beta}+\sin{2\gamma})}{s}.\end{aligned}\tag{17}$$
But $\sin{2\alpha}+\sin{2\beta}+\sin{2\gamma}=4\sin{\alpha}\sin{\beta}\sin{\gamma}=\frac{abc}{2R^3}=\frac{2rs}{R^2}$, hence
$$\frac{[A'B'C']}{[DEF]}=1-\frac{R}{s}\left(\frac{2rs}{R^2}\right)=1-\frac{2r}{R}.\tag{18}$$
Finally, from $(2)$ and $(18)$,
$$[ABC]+[A'B'C']=\frac{2r}{R}[DEF]+\left(1-\frac{2r}{R}\right)[DEF]=[DEF].$$
$\square$
Some corollary inequalities:
- $\frac{(a^2-b^2)(a^2-c^2)}{b^2c^2}+\frac{(a^2-c^2)(b^2-c^2)}{a^2b^2}\geq\frac{(a^2-b^2)(b^2-c^2)}{a^2c^2}.$ (follows from $(9)$)
- $\frac{\sin{(\alpha-\beta)}\sin{(\alpha-\gamma)}}{\sin{\gamma}\sin{\beta}}+\frac{\sin{(\alpha-\gamma)}\sin{(\beta-\gamma)}}{\sin{\alpha}\sin{\beta}}\geq\frac{\sin{(\alpha-\beta)}\sin{(\beta-\gamma)}}{\sin{\alpha}\sin{\gamma}}.$ (follows from $(13)$)
- $\frac{c(a+b-c)}{ab}+\frac{b(a-b+c)}{ac}+\frac{a(-a+b+c)}{bc}\leq3.$ (follows from $(15)$) (this is IMO, 1964/2)
- $a\cos{\alpha}+b\cos{\beta}+c\cos{\gamma}\leq{s}.$ (follows from $(16)$)
- $\sin{2\alpha}+\sin{2\beta}+\sin{2\gamma}\leq\frac{s}{R}.$ (follows from $(17)$)
- $R\geq{2r}.$ (This is Euler's Inequality! It follows from (18))
Update. Van Khea has generalized my problem. I have given a proof of his nice generalization which is available at
Van Khea's areal problem.